Spinning gas clouds: III. Solutions of minimal energy with precession

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 365211
(http://iopscience.iop.org/0305-4470/36/19/304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.103
The article was downloaded on 02/06/2010 at 15:28

Please note that terms and conditions apply.

Spinning gas clouds: III. Solutions of minimal energy with precession

B Gaffet
CNRS (URA 2052) and CEA DSM/DAPNIA/Service d'Astrophysique CEN Saclay, 91191 Gif-Sur-Yvette cedex, France

Received 3 February 2003, in final form 21 March 2003
Published 29 April 2003
Online at stacks.iop.org/JPhysA/36/5211

Abstract

We consider the model of rotating and expanding gas cloud originally proposed by Ovsiannikov (1956 Dokl. Akad. Nauk SSSR 111 47) and Dyson (1968 J. Math. Mech. 18 91). Under the restricting assumptions of an adiabatic index $\gamma=5 / 3$ and of vorticity-free motion, this has been shown (Gaffet 2001 J. Phys. A: Math. Gen. 34 2097) to be a Liouville integrable Hamiltonian system. In the present work, we consider the precessing solutions where the cloud does not retain a fixed rotation axis. Choosing for definiteness a particular set of constants of motion (which corresponds to a minimum of the energy), we show that a separation of variables occurs, and that the equations of motion are reducible to the form of a Riccati equation, whose integration merely involves an elliptic integral.

PACS numbers: 02.03.Ik, 45.20.Jj, 47.10.+g

1. Introduction

We consider the class of rotating ellipsoidal gas clouds first proposed by Ovsiannikov (1956) and Dyson (1968). Gaffet (1996, 2001a: hereafter, paper I) has shown that, when the gas is monatomic (adiabatic index $\gamma=5 / 3$) and there is no vorticity, the corresponding equations of gas motion constitute a Liouville integrable Hamiltonian system with five degrees of freedom. The evolution of the cloud may be described by the motion of a particle in the five-dimensional space $S_{2} \times 0(3)$, where S_{2} is the unit sphere and $0(3)$ is the three-dimensional rotation group. The motions in S_{2} and $0(3)$ describe the evolution of the cloud's shape and orientation, respectively (there is an additional $0(3)$ group associated with the vorticity, but it need not be considered in the present case, where the vorticity is taken to be zero).

There are five commuting integrals of motion: the energy constant m, the total angular momentum \vec{J}^{2}, two additional integrals denoted I_{6} and L_{6} and one component $\left(J_{z}\right)$ of angular momentum; which makes this Hamiltonian system a Liouville integrable one.

Detailed results concerning the form of the solutions are available under the simplifying assumption of rotation around a fixed principal axis (Gaffet 2001b: paper II).

We present here the first detailed solution of the system in cases of rotation with precession. For simplicity, we will restrict our consideration to the minimal energy cases (where m takes its lowest possible value, the other integrals of motion being kept fixed); and, for definiteness, we choose the following set of constants:

$$
\vec{J}^{2}=12 \quad-I_{6} / 108=\varepsilon=4 \quad L_{6}=0
$$

As mentioned in paper II the corresponding minimum value of the energy is $m_{0}=5$.
The value $L_{6}=0$ is compatible with a particular solution without precession, which has already been studied in earlier works; but besides it, there exists a whole one-parameter family of solutions with precession, whose study is the subject of the present paper.

The system is reducible to one of second order, for two unknown functions $\lambda(u)$ and $w(u)$ say. We show that, under the above restricting assumptions, the system is separable, in the sense that the evolution of the variable w is governed by an equation involving w only

$$
w^{\prime}(u)=\sqrt{P(w)}
$$

where P is a polynomial of the fourth degree, i.e. w is an elliptic function of the independent variable u. To complete the solution, the variable λ is shown to satisfy the Riccati equation

$$
\mathrm{d} \lambda / \mathrm{d} w=a(w) \lambda^{2}+b(w) \lambda+c(w) .
$$

The special solution (which is precession-free in cases where $L_{6}=0$) turns out to provide two particular solutions of the Riccati equation, whose integration is thereby reduced to one quadrature; that quadrature is an elliptic integral, which is calculable by sigma functions.

2. The equations of motion

Let us briefly recall the form of the equations of motion for a vorticity-free monatomic ellipsoidal gas cloud without preferred axis of rotation. Denoting D_{1}, D_{2}, D_{3} the principal axes of the cloud, normalized so that the product $D_{1} D_{2} D_{3}=1$, we introduced in paper I a pair of variables $\left(X_{0}, Y_{0}\right)$:

$$
\left\{\begin{array}{l}
X_{0}=\operatorname{Tr}\left(D^{2}\right) \tag{2.1}\\
Y_{0}=\operatorname{Tr}\left(D^{-2}\right)
\end{array}\right.
$$

where D is the diagonal matrix diag $\left(D_{1}, D_{2}, D_{3}\right):\left(X_{0}, Y_{0}\right)$ may be viewed as a coordinate system on the unit sphere $\left(S_{2}\right)$. The independent variable u that will be used here throughout (and with respect to which the Painlevé property has been shown to hold, at least in precessionless cases) is related to the Hamiltonian time t by

$$
\begin{equation*}
\mathrm{d} u=X_{0} \mathrm{~d} t \tag{2.2}
\end{equation*}
$$

The derivative of D defines the diagonal part of a 3×3 symmetric matrix v :

$$
\begin{equation*}
v_{i i}=\frac{\mathrm{d}}{\mathrm{~d} u} \ln D_{i} \quad(i=1,2,3) \tag{2.3}
\end{equation*}
$$

whose off-diagonal part is related to the components of the angular momentum \vec{j} in the rotating frame:

$$
\begin{equation*}
v_{i j}=j_{k} /\left(D_{i}^{2}-D_{j}^{2}\right) \tag{2.4}
\end{equation*}
$$

(where (i, j, k) is a circular permutation of $(1,2,3)$).

We then reformulated the system in terms of eight physical variables: (a) $\left(X_{0,1,2} ; Y_{0,1,2}\right)$, is defined by

$$
\left\{\begin{array}{l}
X_{n}=\operatorname{Tr}\left(D v^{n} D\right) \tag{2.5}\\
Y_{n}=\operatorname{Tr}\left(D^{-1} v^{n} D^{-1}\right)
\end{array} \quad(n=0,1,2)\right.
$$

and (b) (T, P), the characteristic coefficients of the matrix v :

$$
\begin{equation*}
v^{3}+T v-P=0 \tag{2.6}
\end{equation*}
$$

The resulting equations of motion are the following:
(a) $\left\{T^{\prime}(u)=3 P-Y_{1}\right.$
(b) $\left\{\begin{array}{l}P^{\prime}(u)=-\frac{2}{3} T^{2}+\left(\frac{2}{3} T Y_{0}+Y_{2}\right)\end{array}\right.$
(a) $X_{0}^{\prime}(u)=2 X_{1}$

(a) $\left\{Y_{0}^{\prime}(u)=-2 Y_{1}\right.$
(b) $\left\{Y_{1}^{\prime}(u)=-\left(3 Y_{2}+\frac{2}{3} T Y_{0}\right)+2\left(\frac{Y_{0}^{2}}{3}-X_{0}\right)\right.$
(c) $\quad Y_{2}^{\prime}(u)=4\left(\frac{2}{3} T Y_{1}-P Y_{0}\right)+2\left(\frac{2}{3} Y_{0} Y_{1}+X_{1}\right)$.

They admit the integrals of energy (m) and of total angular momentum $\left(\vec{j}^{2}\right)$ (also denoted α^{2}):

$$
\begin{align*}
& 9 m=\left(X_{0} X_{2}-X_{1}^{2}\right)+3 X_{0} \tag{2.10}\\
& \vec{j}^{2} \equiv \alpha^{2}=\left(X_{0} X_{2}-X_{1}^{2}\right)+3 Y_{2}+4 T Y_{0} \tag{2.11}
\end{align*}
$$

We introduced the symmetry (\tilde{T}) which consists of the inversion of the principal axes of the cloud

$$
\begin{equation*}
\tilde{D}_{i}=1 / D_{i} \quad(i=1,2,3) \tag{2.12}
\end{equation*}
$$

without affecting the matrix v. While that is only a partial symmetry, not fully respected by all the equations of motion, we have noted that it is still useful to consider. It turns the angular momentum vector \vec{j} into a new vector \tilde{j}

$$
\begin{equation*}
\tilde{j}_{i}=-D_{i}^{2} j_{i} \quad(i=1,2,3) \tag{2.13}
\end{equation*}
$$

In addition to the (conserved) angular momentum \vec{j}^{2}, the quantities $A_{12}=-\vec{j} \cdot \tilde{j}$ and $A_{22}=\overrightarrow{\tilde{j}}^{2}$, although not conserved, turn out to play an essential role as well, as will be seen below; they are given by expressions analogous to equation (2.11). (Note in particular the exact symmetry of the expression (2.11) of angular momentum and of A_{22}, under the exchange of X and Y; and the auto-symmetry exhibited by A_{12}.):

$$
\left\{\begin{array}{l}
A_{12}=\left(X_{0} Y_{0}+3\right) T+\left(X_{0} Y_{2}+Y_{0} X_{2}\right)+X_{1} Y_{1} \tag{2.14}\\
A_{22}=\left(Y_{0} Y_{2}-Y_{1}^{2}\right)+\left(3 X_{2}+4 T X_{0}\right) .
\end{array}\right.
$$

The integral I_{6} admits a relatively simple expression involving A_{22}
$I_{6} \equiv-108 \varepsilon=27\left(P+Y_{1}\right)^{2}+4 T\left[\left(T+3 Y_{0}\right)^{2}+9\left(Y_{2}-3 X_{0}\right)\right]+36 A_{22}$.
(When the expression (2.14) of A_{22} is substituted in the above equation, the general expression of I_{6} given in paper I (p2104) is recovered.) Although the expression of L_{6} given in paper I is complicated, it can also be written down compactly as a triple product:

$$
\begin{equation*}
L_{6}=\left(\overrightarrow{\tilde{j}}, v \overrightarrow{\tilde{j}}, v^{2} \overrightarrow{\tilde{j}}-3 \vec{j}\right) \tag{2.16}
\end{equation*}
$$

involving the vectors $\vec{j}, \overrightarrow{\tilde{j}}$ and the matrix v.
Finally, the eight variables are subject to an algebraic constraint

$$
\begin{equation*}
K_{6}=0 \tag{2.17}
\end{equation*}
$$

whose detailed expression may be found in paper I (see equation (5.11) therein). K_{6} has the property of being exactly invariant under the inversion of the principal axes; in addition, it is a homogeneous function of the sixth degree of the components of v.

3. The two-dimensional surface $\left(\Sigma_{2}\right)$

For the Liouville integrable Hamiltonian motion in five-dimensional space ($S_{2} \times 0(3)$) with five commuting integrals of motion ($m, \alpha^{2}, I_{6}, L_{6}, J_{z}$), the Liouville tori are five dimensional. However, the location in the space $0(3)$ being irrelevant as a consequence of $0(3)$ invariance, the corresponding sub-manifold $\left(\Sigma_{3}\right)$ in the space $\left(X_{n}, Y_{n}, T, P\right)$ has lower dimensionality. In the case of a fixed rotation axis, $\left(\Sigma_{3}\right)$ may be simply identified with the sphere S_{2}, and is two dimensional. In general, however, when there is no fixed axis, the component j_{z} of angular momentum in the moving frame is no longer determined by the integral of motion J_{Z}, and $\left(\Sigma_{3}\right)$ is three dimensional.

In the special case where the energy constant m takes its minimum value m_{0} (the other constants α^{2}, I_{6}, L_{6} being kept fixed), (Σ_{3}) may still be three dimensional as a complex manifold, but its restriction to real space becomes two dimensional, and is spanned by a oneparameter family of real trajectories, whose determination is the subject of the present work.

We will for simplicity restrict our consideration to a minimal energy case with a vanishing value of L_{6}. In such cases there exists one real trajectory which is precessionless, but all the others are precessing. This suggests that the cases where L_{6} is non-zero might not be essentially different.

3.1. Characterization of the real surface $\left(\Sigma_{2}\right)$

When a three-dimensional algebraic hypersurface $\left(\Sigma_{3}\right)$ has a real part reduced to two dimensions, that real surface $\left(\Sigma_{2}\right)$ is algebraic as well. Thus in the minimal energy case there exists an algebraic combination of $\left(X_{n}, Y_{n}, T, P\right)$ to be found, distinct from the constants of motion, and whose vanishing characterizes the set of real trajectories. It may be found in the following way.

We start with the observation that, in minimal energy cases where $L_{6}=0$, there exists on the Liouville torus a real solution without precession, which has been characterized in earlier works. For definiteness, we consider in what follows the particular set of constants:

$$
\alpha^{2}=12 \quad \varepsilon=4 \quad L_{6}=0
$$

for which, as mentioned in paper II, the minimum value of the energy is

$$
m_{0}=5
$$

The real solution without precession is found to satisfy the simple relations:

$$
\left\{\begin{array}{l}
Z_{12} \equiv A_{12}+6\left(T-Y_{0}+X_{0}\right)=0 \tag{3.1}\\
Z_{22} \equiv A_{22}+2\left(X_{0}^{2}-6 Y_{0}-9\right)=0
\end{array}\right.
$$

which completely determine the trajectory, under the assumption of a fixed rotation axis. We considered the possibility that these equations might still be applicable to the precessing solutions as well, and might in fact constitute the equation of the surface $\left(\Sigma_{2}\right)$ that we are looking for.

Assuming then that Z_{12} and Z_{22} vanish all over $\left(\Sigma_{2}\right)$, their derivatives $Z_{12}^{\prime}(u), Z_{22}^{\prime}(u)$ must of course also vanish; making use of the equations of motion, we obtain:

$$
\left\{\begin{array}{l}
\frac{-\mathrm{d}}{\mathrm{~d} u}(\vec{j} \cdot \overrightarrow{\tilde{j}})=P\left(9-X_{0} Y_{0}\right)-\left(X_{1} Y_{2}+X_{2} Y_{1}\right) \tag{3.2}\\
\frac{\mathrm{d}}{\mathrm{~d} u}\left(\overrightarrow{\tilde{j}}^{2}\right)=4 P\left(3 X_{0}-Y_{0}^{2}\right)+4 X_{1} T+4 Y_{1}\left(Y_{2}+T Y_{0}\right)
\end{array}\right.
$$

and hence the derivatives of Z_{12}, Z_{22} :

$$
\left\{\begin{array}{l}
-\mathrm{d} Z_{12} / \mathrm{d} u=P\left(X_{0} Y_{0}-27\right)+X_{1}\left(Y_{2}-12\right)+Y_{1}\left(X_{2}-6\right) \tag{3.3}\\
\frac{1}{4} \frac{\mathrm{~d} Z_{22}}{\mathrm{~d} u}=P\left(3 X_{0}-Y_{0}^{2}\right)+X_{1}\left(T+2 X_{0}\right)+Y_{1}\left(Y_{0} T+Y_{2}+6\right)
\end{array}\right.
$$

Considering now the system:

$$
\left\{\begin{array}{l}
Z_{12}=Z_{22}=0 \tag{3.4}\\
Z_{12}^{\prime}=Z_{22}^{\prime}=0
\end{array}\right.
$$

it turns out that these four equations are not independent (when m and α^{2} are given); an independent sub-set consists, e.g., of

$$
\left\{\begin{array}{l}
Z_{12}=Z_{22}=0 \tag{3.5}\\
Z_{22}^{\prime}=0 .
\end{array}\right.
$$

Taking account of the m and α^{2} integrals, the variables X_{2} and Y_{2} may be easily eliminated, and the system (3.5) may serve to determine $\left(X_{1}, Y_{1}, P\right)$ as functions of $\left(X_{0}, Y_{0}, T\right)$. The solution assumes the form of a bi-quadratic equation for X_{1} (i.e. a second-degree one for X_{1}^{2}). Substituting it into the expressions of the integrals of motion, one finds that the following relations:
(a) $K_{6}=-L_{6}$
(b) $\varepsilon-4=L_{6} / 108$
identically hold for arbitrary values of all three independent variables $\left(X_{0}, Y_{0}, T\right)$.
This remarkable result shows that if we complete the system (3.5) by the equation

$$
\begin{equation*}
\varepsilon=4 \tag{3.7}
\end{equation*}
$$

we obtain a two-dimensional surface in $\left(X_{0}, Y_{0}, T\right)$ space on which, in addition to m and α^{2}, the integrals ε, L_{6} and K_{6} all have their prescribed values; that is to say, the surface obtained is a real two-dimensional sub-manifold of $\left(\Sigma_{3}\right)$, which may be identified with $\left(\Sigma_{2}\right)$.

3.2. The tenth-degree surface $\left(\Sigma_{2}\right)$ in coordinates $\left(X_{0}, Y_{0}, T\right)$

The equation of the surface in coordinates $\left(X_{0}, Y_{0}, T\right)$ is found through the elimination of the remaining variables $\left(X_{1}, Y_{1}, P\right)$, which can be done in the following way.

The system reads, in compact form

$$
\left\{\begin{array}{l}
\left(3 X_{1}^{2}-X_{0} Y_{1}^{2}\right)=A_{1} \tag{3.8}\\
\left(3 X_{1} Y_{1}+Y_{0} Y_{1}^{2}\right)=-B_{1} \\
\left(Y_{0}^{2}-3 X_{0}\right)\left(P+Y_{1}\right)=X_{1}\left(T+2 X_{0}\right)-Y_{1} C_{1}
\end{array}\right.
$$

where A_{1}, B_{1}, C_{1} are polynomials in $\left(X_{0}, Y_{0}, T\right)$:

$$
\left\{\begin{array}{l}
A_{1} \equiv \frac{4}{3} T X_{0}\left(Y_{0}^{2}-3 X_{0}\right)-X_{0} Y_{0}\left(X_{0}-23\right)-\left(2 X_{0}^{3}-27 X_{0}+135\right) \tag{3.9}\\
B_{1} \equiv T\left(\frac{4}{3} Y_{0}^{3}-5 X_{0} Y_{0}+27\right)-Y_{0}^{2}\left(X_{0}-23\right)-2 Y_{0} X_{0}^{2}+3 X_{0}\left(X_{0}-5\right) \\
C_{1} \equiv \frac{1}{3} Y_{0} T-Y_{0}^{2}+2 X_{0}+5
\end{array}\right.
$$

The system must be completed by the condition $\varepsilon=4$, which is:

$$
\begin{equation*}
\left(P+Y_{1}\right)^{2}=-S_{3} / 3 \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{3} \equiv \frac{4}{9} T^{3}-\frac{8}{3} T^{2} Y_{0}+4 T\left(Y_{0}^{2}-2 X_{0}-11\right)+8\left(6 Y_{0}-X_{0}^{2}+15\right) \tag{3.11}
\end{equation*}
$$

Then, introducing
(a) $\quad D_{2} \equiv X_{0}\left(T+2 X_{0}\right)^{2}+2 Y_{0} C_{1}\left(T+2 X_{0}\right)+3 C_{1}^{2}$
(b) $\quad E_{2} \equiv\left(T+2 X_{0}\right) A_{1}+2 B_{1} C_{1}$
(c) $\quad R_{3} \equiv\left(Y_{0}^{2}-3 X_{0}\right)^{2} S_{3}+\left(T+2 X_{0}\right) E_{2}$
one obtains

$$
\begin{equation*}
Y_{1}^{2}=-R_{3} / D_{2} \tag{3.13}
\end{equation*}
$$

and, in addition

$$
\begin{align*}
& X_{1}^{2}=\frac{P_{3}}{3 D_{2}} \tag{3.14}\\
& X_{1} Y_{1}=\frac{Q_{3}}{3 D_{2}} \tag{3.15}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
P_{3} \equiv\left(A_{1} D_{2}-X_{0} R_{3}\right) \tag{3.16}\\
Q_{3} \equiv\left(Y_{0} R_{3}-B_{1} D_{2}\right) .
\end{array}\right.
$$

Owing to a cancellation of the highest degree terms between $A_{1} D_{2}$ and $X_{0} R_{3}, P_{3}$ is of degree 7 only in (X_{0}, Y_{0}, T), as is R_{3}; and similarly Q_{3} is of degree 7 only; the equation of the surface

$$
\begin{equation*}
\left(Q_{3}^{2}+3 P_{3} R_{3}\right)=0 \tag{3.17}
\end{equation*}
$$

is accordingly of degree 14 . There is, however, a simplification by a factor $\left(Y_{0}^{2}-3 X_{0}\right)^{2}$, so that the final result

$$
\begin{equation*}
F\left(X_{0}, Y_{0}, T\right) \equiv \frac{\left(Q_{3}^{2}+3 P_{3} R_{3}\right)}{\left(Y_{0}^{2}-3 X_{0}\right)^{2}}=0 \tag{3.18}
\end{equation*}
$$

is of the tenth degree. The coefficients of F are listed in appendix A, using for convenience a slightly modified coordinate system (X_{0}, Y_{0}, S), where

$$
\begin{equation*}
S \equiv T-Y_{0} \tag{3.19}
\end{equation*}
$$

3.3. Asymptotic behaviour and conic point singularity

Introducing for conciseness the new variable S in place of T, the homogeneous terms of degree 10 in F amount to

$$
\begin{equation*}
F_{10}=X_{0}^{2} Y_{0}^{2} S^{4}\left(2 X_{0}+3 S\right)^{2} \tag{3.20}
\end{equation*}
$$

Both factors X_{0} and $\left(2 X_{0}+3 S\right)$ in F_{10} are associated with a double line at infinity.

There is also a conic point, denoted $\left(K_{4}\right)$, of order 4, located at

$$
X_{0}=-3 \quad Y_{0}=1 \quad S=5
$$

It is a degenerate one, locally decomposable into four intersecting complex conjugate planes.
There is in addition a number of conic points of the second order.

3.4. Other double lines

There are two double lines in addition to the two at infinity: the first one is just the trajectory (L_{0}), the particular solution without precession.

There is another special line on the surface (although not a trajectory), whose existence is manifest from the form of equation (3.13): it is the line, denoted $\left(L_{2}\right)$, defined by the equations:

$$
\begin{equation*}
D_{2}=R_{3}=0 \tag{3.21}
\end{equation*}
$$

and it is a double line too.
Both $\left(L_{0}\right)$ and $\left(L_{2}\right)$ pass through the conic point $\left(K_{4}\right)$, which is why it is a degenerate conic point of the fourth order.

The singular solution $\left(L_{0}\right)$ is a unicursal curve, and the slope $(S-5) /\left(X_{0}+3\right)$ of a straight line through the point $\left(K_{4}\right)$ may serve as the parameter. It admits the following representation, in terms of an homographically related parameter r :

$$
\left\{\begin{array}{l}
X_{0}=\frac{3\left(3 r^{3}+3 r+2\right)}{P_{2}(r)} \tag{3.22}\\
S=-\left(X_{0}+\frac{4}{P_{2}}\right) \\
Y_{0}=\left(\frac{X_{0}^{2}}{6}-\frac{3}{2}+\frac{4}{P_{2}^{2}}\right)
\end{array}\right.
$$

where

$$
\begin{equation*}
P_{2}(r) \equiv\left(3 r^{2}+1\right) \tag{3.23}
\end{equation*}
$$

The line $\left(L_{2}\right)$ on the other hand is less easy to study. Its intersection with planes $X_{0}=$ constant gives rise to a 13th degree equation, given in appendix B. We note that the section by the plane $X_{0}=6$ decomposes into a set of four points plus another of nine points.

3.5. Straight lines

We have seen that the section of the surface by the plane at infinity fully decomposes into straight lines, of which two are double lines. Curiously, there exists yet another straight line on the surface, defined by the equations

$$
\left\{\begin{array}{l}
X_{0}=7 \tag{3.24}\\
T=-2 / 3 .
\end{array}\right.
$$

There are six double points aligned on it: two from the singular solution $\left(L_{0}\right)$, and four from $\left(L_{2}\right)$.

Taking Y_{0} as a free parameter, the remaining variables X_{1}, Y_{1}, P take the following values:

$$
\left\{\begin{array}{l}
X_{1}= \pm 2 \sqrt{2} / 3 \\
Y_{1}=X_{1}\left(Y_{0}-9\right) \\
P=2 X_{1} / 9
\end{array}\right.
$$

4. A parametric representation of the surface

A natural way of finding a parametric representation of a surface is to look for plane (or straight line) sections of a type sufficiently simple that they can be parametrized.

Let us first consider the linear sections through the point $\left(K_{4}\right)$: there are in general six points of intersection with the surface, which is intractable. If the line considered also intersects the second double line at infinity, i.e. if it lies in the plane:

$$
\begin{equation*}
\left(S+2 X_{0} / 3\right)=3 \tag{4.1}
\end{equation*}
$$

there are only four other intersections; moreover, the corresponding quartic equation decomposes into a pair of trinomials, so that particular plane section does admit a simple parametrization.

In view of the existence of the first double line at infinity (in the direction of fixed X_{0}) and of the special physical meaning of X_{0} as one of the coordinates on the sphere S_{2}, it seems natural to try next the plane sections $X_{0}=$ constant, which are curves of degree 8. In the particular case, where $X_{0}=6$, the section turns out to have the form

$$
\begin{equation*}
F \equiv A_{4}^{2}-\left(2 Y_{0}+1\right) A_{3}^{2}=0 \tag{4.2}
\end{equation*}
$$

where A_{3} and A_{4} are, respectively, cubic and quartic polynomials in Y_{0} and S; it is thus decomposable, through the transformation:

$$
\begin{equation*}
Y_{0}=\left(y^{2}-1 / 2\right) \tag{4.3}
\end{equation*}
$$

into a pair of curves of the sixth degree.
Only four of the 13 points of $\left(L_{2}\right)$ remain double points under that transformation, which explains the decomposability of the equation of $\left(L_{2}\right)$ when $X_{0}=6$, mentioned earlier.

In the same way, only one point of $\left(L_{0}\right)$ remains double, so there are five double points in all; and there is also a triple point at infinity. If we then cut by a family of unicursal cubics ${ }^{1}$ having their double point coinciding with the triple point and passing through the five double points, there only remain two movable intersections, and a parametrization is found which merely involves a square root.

A similar result may be obtained for arbitrary sections $X_{0}=$ constant, in spite of the lack of decomposability into lower degree curves when $X_{0} \neq 6$. In general, there are 18 double points in all: 13 on $\left(L_{2}\right)$, three on $\left(L_{0}\right)$ plus two double points at infinity: the double point $\left(M_{1}\right)$ in direction Y_{0} is fixed, and another double point $\left(M_{2}\right)$ in direction S is fixed; and in the latter case, the two branches have a common tangent, which is the line at infinity. Cutting by a family of quintic (fifth degree) curves passing through all the double points, and admitting the common tangent at $\left(M_{2}\right)$, there are only two movable points of intersection ${ }^{2}$, and a parametrization of the section, involving a square root, is obtained. It has the following form:

$$
\left\{\begin{array}{l}
S=\frac{\left[G_{1}+4(w-3) \delta_{2} \delta_{4}\right]}{(w+3)^{2} A_{2}} \tag{4.4}\\
Y_{0}=\frac{\left[F_{2}+12 F_{1} \delta_{2} \delta_{4}\right]}{6(w+3)^{2} A_{2}^{2}}
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\delta_{2} \equiv \sqrt{-2 \Delta_{2}} \tag{4.5}\\
\delta_{4} \equiv \sqrt{-\Delta_{4} / 3}
\end{array}\right.
$$

${ }^{1}$ A unicursal curve admits a rational parametrization. A unicursal cubic must have one double point.
${ }^{2}$ The sections of the surface by planes $X_{0}=$ constant are of degree 8 , since these planes pass through a double straight-line at infinity; thus there are $8 \times 5=40$ intersections with a quintic. These quintics are non-decomposable in general (the 13 points on (L_{2}) are not aligned), and they present 38 fixed intersections (among which four intersections at M_{2}), whence the remaining two movable intersections. An account of this method may be found in Goursat (1949, vol 2, ch 15).
and $\Delta_{2}, G_{1}, F_{1}, F_{2}$ are polynomials in X_{0} and w, while Δ_{4} and A_{2} are functions of w only:

$$
\begin{align*}
& A_{2}(w) \equiv w^{2}-42 w+201 \tag{4.6}\\
& \Delta_{4}(w) \equiv w^{4}+6 w^{3}+18 w^{2}+54 w-207 \tag{4.7}\\
& \Delta_{2}\left(X_{0}, w\right) \equiv X_{0}^{2} u_{2}(w)+12 X_{0}(w-1)(w+3)+30(w+3)^{2} \tag{4.8}
\end{align*}
$$

with

$$
\begin{align*}
& u_{2}(w) \equiv w^{2}+6 w-39 \tag{4.9}\\
& G_{1}\left(X_{0}, w\right) \equiv X_{0} d_{2}(w)+4 d_{4}(w)
\end{align*}
$$

with

$$
\left\{\begin{array}{l}
d_{2}(w) \equiv 3 w^{4}+20 w^{3}-78 w^{2}-1068 w+99 \\
d_{4}(w) \equiv 5 w^{4}-246 w^{2}+504 w-4743
\end{array}\right.
$$

The expressions of F_{1} and F_{2}, which are, respectively, linear and quadratic in X_{0}, are given in appendix D .

The sections $w=$ constant of the surface are thus conic sections in projection on the plane $\left(X_{0}, S\right)$:

$$
\begin{equation*}
\Phi\left(S, X_{0}, w\right) \equiv\left(c_{1} S^{2}+c_{2} X_{0} S+c_{3} X_{0}^{2}\right)+\left(c_{4} S+c_{5} X_{0}\right)+c_{6}=0 \tag{4.10}
\end{equation*}
$$

where the c_{n} (see appendix D) are functions of w only.
Using the above results, the variables X_{1}, Y_{1} and P may also be determined in terms of X_{0} and w; we give below the expression obtained for X_{1} :
$-6(w+3) A_{2} X_{1} / \sqrt{3}=4 \delta_{4} X_{0}\left[(w-9) X_{0}+6(w-11)\right]-\delta_{2}\left(X_{0} v_{2}+3 A_{2}\right)$
where

$$
v_{2}(w) \equiv w^{2}+10 w-27
$$

The parameter w is only determined by the present method up to an arbitrary homographic (Möbius) transformation, which can be chosen independently for each value of X_{0}. However, it turned out to be possible to choose it in such a way that the discriminant Δ_{4} did not depend on X_{0}. Moreover, the product $(w-3)^{2} \Delta_{4}(w)$ precisely coincides with the sixth degree polynomial $A_{6}(w)$ introduced in paper II (see equation (2.35) therein) when the present values of the integrals of motion are substituted. This is a remarkable result, in view of the fact that the analysis of paper II merely concerned solutions in rotation around a fixed axis, whereas the parametric representation given here concerns solutions which are all precessing, with the only exception of the singular solution $\left(L_{0}\right)$.

5. Separation of variables and linearization

5.1. Separability of the variable w

The parametric representation enables us to calculate the derivatives of X_{0}, Y_{0} and S as functions of (X_{0}, w) using the general formulae:

$$
\left\{\begin{array}{l}
X_{0}^{\prime}(u)=2 X_{1} \tag{5.1}\\
Y_{0}^{\prime}(u)=-2 Y_{1} \\
S^{\prime}(u)=3 P+Y_{1} .
\end{array}\right.
$$

The derivative of w may then be obtained through differentiation of equation (4.10):

$$
\begin{equation*}
\Phi_{x} X_{0}^{\prime}(u)+\Phi_{s} S^{\prime}(u)+\Phi_{w} w^{\prime}(u)=0 \tag{5.2}
\end{equation*}
$$

and, as it turns out, it is given by the very simple formula:

$$
\begin{equation*}
w^{\prime}(u)=\delta_{4} / \sqrt{3} \tag{5.3}
\end{equation*}
$$

which shows that the evolution of w can be determined independently of that of the remaining variables; moreover, the function $w(u)$ is elliptic.

The problem is now reduced to that of solving a first-order ordinary differential equation (o.d.e.) for the function $X_{0}(w)$; using: $\frac{\mathrm{d} X_{0}}{\mathrm{~d} w}=\frac{2 X_{1}}{w^{\prime}(u)}$, where X_{1} is given by equation (4.11), the equation is the following:

$$
\begin{equation*}
(w+3) A_{2} \frac{\mathrm{~d} X_{0}}{\mathrm{~d} w}+4 X_{0}\left[(w-9) X_{0}+6(w-11)\right]=\frac{\delta_{2}}{\delta_{4}}\left(v_{2} X_{0}+3 A_{2}\right) . \tag{5.4}
\end{equation*}
$$

5.2. Reduction to the Riccati form

Assuming that the Painlevé property still holds in the presence of precession, we expect that $X_{0}(u)$ has only pole singularities and hence that $X_{0}(w)$ has no movable singularities other than poles. If the o.d.e. for $X_{0}(w)$ did not include an irrational dependence on X_{0} (through the factor δ_{2}), it would have to be of Riccati type (Ince 1956); this suggests that a rationalizing transformation eliminating the square root δ_{2} would give rise to an equation of Riccati form for the new unknown function.

Introducing the rescaling

$$
\begin{equation*}
\frac{X_{0}}{(w+3)} \equiv \beta \tag{5.5}
\end{equation*}
$$

the expression of Δ_{2} simplifies to

$$
\begin{align*}
\frac{\Delta_{2}}{(w+3)^{2}} & \equiv \beta^{2} u_{2}(w)+12 \beta(w-1)+30 \\
& \equiv u_{2}\left(\beta-\beta_{0}\right)\left(\beta-\beta_{1}\right) \tag{5.6}
\end{align*}
$$

where β_{0}, β_{1} are the roots of the trinomial, and are expressed by

$$
\begin{equation*}
\beta_{0}=\frac{\left[6(1-w)+\sqrt{6 A_{2}}\right]}{u_{2}} \tag{5.7}
\end{equation*}
$$

(together with a similar expression for β_{1}). A rationalizing transformation is obtained through the introduction of the variable λ :

$$
\begin{equation*}
\lambda=\frac{\delta_{2}}{(w+3)\left(\beta-\beta_{0}\right)} \tag{5.8}
\end{equation*}
$$

Both δ_{2} and X_{0} then have rational expressions in terms of λ :

$$
\left\{\begin{array}{l}
X_{0}=(w+3) \beta \quad \text { with } \\
\beta-\beta_{0}(w)=-4 \sqrt{6 A_{2}} /\left(\lambda^{2}+2 u_{2}\right)
\end{array}\right.
$$

for any given value of the independent variable w.
The resulting o.d.e. for $\lambda(w)$ has the Riccati form, as expected, and reads
$2 u_{2} A_{2} \frac{\mathrm{~d} \lambda}{\mathrm{~d} w}=\left[2 \lambda A_{2}(w+3)+\frac{3 v_{4}\left(\lambda^{2}+2 u_{2}\right)}{(w+3) \delta_{4}}\right]+\sqrt{6 A_{2}}\left[8 \lambda(w-9)-\frac{v_{2}\left(\lambda^{2}-2 u_{2}\right)}{\delta_{4}}\right]$
where

$$
\begin{aligned}
v_{4}(w) & \equiv 2 v_{2}(w-1)(w+3)-A_{2} u_{2} \\
& \equiv w^{4}+60 w^{3}+70 w^{2}-3012 w+8001 .
\end{aligned}
$$

5.3. Linearization

The Riccati equation can be linearized, since one particular solution is known: the singular solution $\left(L_{0}\right)$. The parameter r which occurs in equation (3.22) describing the solution $\left(L_{0}\right)$ is an elliptic function of u, defined by

$$
\left\{\begin{array}{l}
r^{\prime 2}(u) \equiv-\frac{2}{9} P_{4}(r) \tag{5.11}\\
P_{4}(r) \equiv 9 r^{4}-18 r^{3}+9 r^{2}-12 r-2 .
\end{array}\right.
$$

As the roots of $P_{4}(r)$ are homographically related to those of $\Delta_{4}(w)$, there must exist an algebraic relation between r and w, of second degree both in r and in w :

$$
\begin{equation*}
3 r^{2} M_{2}(w)+24 r(w-3)+4\left(w^{2}-3\right)=0 \tag{5.12}
\end{equation*}
$$

where

$$
M_{2}(w) \equiv w^{2}+6 w+33
$$

Solving for r or for w, one finds:

$$
\begin{align*}
& r=-2\left[2(w-3)+\delta_{4}\right] / M_{2}(w) \tag{5.13}\\
& w=\frac{-\left[3 r(3 r+4)+2 \sqrt{-6 P_{4}(r)}\right]}{\left(3 r^{2}+4\right)} . \tag{5.14}
\end{align*}
$$

Equations (5.12), (5.13) and (5.14) may be viewed as the Miura transformation, applied to elliptic functions.

Substituting the expression (5.13) of $r(w)$, the corresponding expressions of X_{0}, of δ_{2}, δ_{4} and of λ in terms of w may be obtained; λ is found to satisfy the second degree equation:
$\lambda^{2}\left[3 H_{5}-2(w+3) H_{3} \sqrt{6 A_{2}}\right]-36 \lambda \delta_{4} u_{2} H_{2}-2 u_{2}\left[3 H_{5}+2(w+3) H_{3} \sqrt{6 A_{2}}\right]=0$
where

$$
\left\{\begin{array}{l}
H_{2} \equiv\left(w^{2}-10 w+73\right) \\
H_{3} \equiv\left(w^{3}-3 w-126\right)
\end{array}\right.
$$

and H_{5} is a fifth degree polynomial in w.
Let us note that the coefficient of λ^{2} in equation (5.15) admits the irrational decomposition:
$10\left[3 H_{5}-2(w+3) H_{3} \sqrt{6 A_{2}}\right] \equiv\left[6(w-1)-\sqrt{6 A_{2}}\right]\left[2 K_{4}-K_{3} \sqrt{6 A_{2}}\right]$
where

$$
\left\{\begin{array}{l}
K_{3}(w) \equiv w^{3}+27 w^{2}-9 w+429 \\
K_{4}(w) \equiv 7 w^{4}-48 w^{3}+78 w^{2}-2664 w-2493
\end{array}\right.
$$

Solving for λ, one obtains the two roots λ_{A} and λ_{B} :

$$
\left\{\begin{array}{l}
\lambda_{\mathrm{A}}=\frac{u_{2}\left[18 H_{2} \delta_{4}-(w+3)^{3} \sqrt{6 A_{2}}\right]}{\left[3 H_{5}-2(w+3) H_{3} \sqrt{6 A_{2}}\right]} \tag{5.17}\\
\lambda_{B}=\frac{u_{2}\left[18 H_{2} \delta_{4}+(w+3)^{3} \sqrt{6 A_{2}}\right]}{\left[3 H_{5}-2(w+3) H_{3} \sqrt{6 A_{2}}\right]}
\end{array}\right.
$$

Both roots λ_{A} and λ_{B} constitute particular solutions of the Riccati equation (5.10), which is thus not only linearizable, but also integrable by quadrature; and its general solution must have the form:

$$
\begin{equation*}
\ln \left(\frac{\lambda-\lambda_{\mathrm{A}}}{\lambda-\lambda_{\mathrm{B}}}\right)=\int f(w) \mathrm{d} w . \tag{5.18}
\end{equation*}
$$

We obtain the following expression for the integrand $f(w)$:

$$
\begin{equation*}
f(w) \equiv \frac{6(w+3)^{2}}{\delta_{4}}\left[(w+3) N_{5}-\frac{N_{7}}{\sqrt{6 A_{2}}}\right] / D_{8} \tag{5.19}
\end{equation*}
$$

where N_{5}, N_{7} and D_{8} are polynomials in w of degrees 5,7 and 8 , respectively. $D_{8}(w)$ admits the irrational decomposition

$$
10 D_{8} \equiv\left(2 K_{4}-K_{3} \sqrt{6 A_{2}}\right)\left(2 K_{4}+K_{3} \sqrt{6 A_{2}}\right)
$$

and the factor at the numerator may be similarly decomposed as

$$
10\left[N_{7}-(w+3) N_{5} \sqrt{6 A_{2}}\right] \equiv\left(2 K_{4}+K_{3} \sqrt{6 A_{2}}\right)\left(4 N_{3}-A_{2} \sqrt{6 A_{2}}\right)
$$

where

$$
N_{3}(w) \equiv w^{3}+97 w^{2}-357 w+99
$$

so that the expression of the integrand may be simplified to

$$
\begin{equation*}
f(w) \equiv \frac{-6(w+3)^{2}}{\delta_{4} \sqrt{6 A_{2}}} \frac{\left(4 N_{3}-A_{2} \sqrt{6 A_{2}}\right)}{\left(2 K_{4}-K_{3} \sqrt{6 A_{2}}\right)} . \tag{5.20}
\end{equation*}
$$

This is not an integral of elliptic type, owing to the presence of the radical $\sqrt{6 A_{2}}$, in addition to δ_{4}. However, the extra singularities occurring as A_{2} vanishes are introduced by the rationalizing transformation (5.7), (5.8) and (5.9), which explicitly involves $\sqrt{6 A_{2}}$; these singularities can be made to disappear through an appropriate (w dependent) Möbius transformation on λ. One way to see it is to consider the linearized equations of motion in the neighbourhood of the solution $\left(L_{0}\right)$.

5.4. Reduction to an elliptic integral

The singular solution $\left(L_{0}\right)$ may be written in the form:

$$
\begin{equation*}
\Psi\left(X_{0}, w\right) \equiv H_{5} X_{0}+2(w+3) K_{4}+3 H_{2} \delta_{2} \delta_{4}=0 . \tag{5.21}
\end{equation*}
$$

The o.d.e. (5.4) for $X_{0}(w)$ gives rise to the following generally valid expression for the derivative of Ψ :

$$
\begin{equation*}
-(w+3) A_{2} \frac{\mathrm{~d} \ln \Psi}{\mathrm{~d} w}=\left[4 X_{0}(w-9)-b_{2}(w)\right]-\frac{\delta_{2}}{\delta_{4}} v_{2}(w) \tag{5.22}
\end{equation*}
$$

where

$$
b_{2}(w) \equiv 5 w^{2}-186 w+741
$$

Let us now substitute on the right-hand side of equation (5.22) the values that X_{0} and δ_{2} take at the singular solution. The expression of X_{0} may be deduced from (5.21) and reads:

$$
\begin{equation*}
X_{0}=-\frac{2}{M_{6}}\left[H_{6}+3(w+3)^{2} H_{2} \delta_{4}\right] \tag{5.23}
\end{equation*}
$$

where

$$
M_{6}(w) \equiv M_{2} M_{4}
$$

$M_{2}(w)$ is given by equation (5.12),

$$
\begin{equation*}
M_{4}(w) \equiv 3 w^{4}-12 w^{3}-14 w^{2}-204 w+1251 \tag{5.24}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{6}(w) \equiv 6(w-3) M_{4}+H_{4} M_{2} \tag{5.25}
\end{equation*}
$$

with

$$
H_{4}(w) \equiv 3 w^{4}+32 w^{3}-114 w^{2}+120 w-2601
$$

We note the identity:

$$
\begin{equation*}
3 M_{6} \equiv 8 H_{3}^{2}+(w+3)^{4} u_{2} . \tag{5.26}
\end{equation*}
$$

The corresponding value of $\delta_{2}\left(X_{0}, w\right)$ is then:

$$
\begin{equation*}
\delta_{2}=\frac{2}{M_{6}}\left[(w+3)^{2} H_{5}+12 H_{2} H_{3} \delta_{4}\right] . \tag{5.27}
\end{equation*}
$$

Upon substitution of (5.23), (5.27) into equation (5.22), and introducing for convenience the rescaling:

$$
\begin{equation*}
\Psi \equiv(w+3)^{6} A_{2} \hat{\Psi} \tag{5.28}
\end{equation*}
$$

one obtains the following expression, valid in the neighbourhood of $\hat{\Psi}=0$:

$$
\begin{equation*}
\frac{\mathrm{d} \ln \hat{\Psi}}{\mathrm{~d} w}=\frac{1}{2} \frac{\mathrm{~d} \ln M_{6}}{\mathrm{~d} w}-\frac{2(w+3) B_{5}}{M_{6} \delta_{4}} \tag{5.29}
\end{equation*}
$$

where $B_{5}(w)$ is the fifth degree polynomial defined by:

$$
\begin{equation*}
A_{2} B_{5} \equiv 4(w-9) H_{2} \Delta_{4}-v_{2} H_{5} \tag{5.30}
\end{equation*}
$$

i.e.

$$
B_{5}(w) \equiv w^{5}-15 w^{4}-94 w^{3}-246 w^{2}-1731 w+5157
$$

The integration of $\hat{\Psi}$ is thus reduced to one of elliptic type; and the term $\frac{1}{2} \frac{\mathrm{~d} \ln M_{6}}{\mathrm{~d} w}$ on the right-hand side of equation (5.29) merely serves to cancel out the branch-point singularities occurring at $M_{6}=0$ in the elliptic integral. The cancellation occurs as a consequence of the exact divisibility by M_{6} of the polynomial:

$$
\Delta_{4} M_{6}^{\prime 2}(w)+48(w+3)^{2} B_{5}^{2} .
$$

6. Conclusion

In the framework of Ovsiannikov and Dyson's model of rotating and expanding gas clouds, we have succeeded in obtaining the first complete determination of a family of solutions with precession (see appendix E). The mathematical expression of the result in its final form surprisingly resembles that for the precessionless cases; which is itself similar to the form of Kowalevski's $(1889,1890)$ results, as noted in paper II (p 9208 therein). In particular, the same elliptic function $w(u)$ is found to govern the flows with or without precession, at least under the restricting conditions imposed here; and in both cases the remaining dependent variable (X_{0} say) is obtainable through the solution of the Riccati equation, whose integration is reducible to one quadrature of elliptic type.

These results suggest that there may exist a deep unity underlying the mathematical descriptions of the ellipsoidal gas flows with and without precession. Let us also mention the identification obtained here of the last integral of motion L_{6}, with a triple product of a simple form (equation (2.16)).

Appendix A. The equation of the surface (Σ_{2})

Writing the equation of the tenth degree surface $\left(\Sigma_{2}\right)$ in the form:

$$
F\left(X_{0}, Y_{0}, S\right) \equiv \sum_{i j k} c_{i j k} X_{0}^{i} Y_{0}^{j} S^{k}=0
$$

We list below (table 1) the non-vanishing coefficients $c_{i j k}$ which all are integers.

Table 1. We list here the coefficients $c(i, j, k)$ of the polynomial function $F\left(X_{0}, Y_{0}, S\right)$ as defined in the text.

i	j	k	$c(i, j, k)$	i	j	k	$c(i, j, k)$
Degree 10				2	3	2	-8370
2	2	6	27	2	5	0	-10008
3	2	5	36	3	0	4	2754
4	2	4	12	3	1	3	17010
				3	2	2	23382
Degree 9				3	3	1	-18738
1	3	5	378	4	0	3	3996
2	3	4	252	4	1	2	17496
3	1	5	162	4	2	1	12852
3	3	3	54	4	3	0	-7992
4	0	5	72	5	0	2	3024
4	1	4	324	5	1	1	5832
4	3	2	324	5	2	0	648
5	0	4	96	6	0	1	-144
5	1	3	216	6	1	0	288
5	3	1	384	7	0	0	-864
6	0	3	32				
6	1	2	48	Degree 6			
6	3	0	128	0	0	6	243
				0	1	5	-1458
Degree 8				0	2	4	2187
0	4	4	1323	0	3	3	37044
1	1	6	-162	0	4	2	-31752
1	2	5	486	0	6	0	21168
1	4	3	-2808	1	0	5	1134
2	1	5	-54	1	1	4	12150
2	2	4	2592	1	2	3	26244
2	4	2	-4950	1	3	2	44604
3	1	4	1152	1	4	1	21384
3	2	3	3780	2	0	4	9207
3	4	1	-2592	2	1	3	95904
4	0	4	243	2	2	2	90639
4	1	3	528	2	3	1	41796
4	2	2	1674	2	4	0	-13392
4	4	0	-165	3	0	3	29232
5	1	2	-1440	3	1	2	118908
5	2	1	432	3	2	1	61236
6	0	2	-648	3	3	0	54828
6	1	1	-1728	4	0	2	40500
6	2	0	216	4	1	1	107352
7	0	1	-576	4	2	0	10368
7	1	0	-576	5	0	1	25056
8	0	0	-144	5	1	0	35856
				6	0	0	9072

Degree 7

0	2	5	-486		Degree 5		
0	3	4	1458	0	1	4	1620
0	5	2	-17064	0	2	3	85050
1	2	4	8046	0	3	2	-7290
1	3	3	-3726	0	4	1	-231120
1	5	1	-17280	0	5	0	181440
2	0	5	-486	1	0	4	-8748

Table 1. (Continued.)

i	j	k	$c(i, j, k)$	i	j	k	$c(i, j, k)$
2	1	4	4374	1	1	3	69606
2	2	3	22950	1	2	2	223074
1	3	1	217728	Degree 3			
1	4	0	-276912	0	0	3	52650
2	0	3	48114	0	1	2	643950
2	1	2	157698	0	2	1	-72900
2	2	1	-59562	0	3	0	-156600
2	3	0	53946	1	0	2	484110
3	0	2	67554	1	1	1	443070
3	1	1	129816	1	2	0	-2182140
3	2	0	65934	2	0	1	318600
4	0	1	75816	2	1	0	823500
4	1	0	-23976	3	0	0	245160
5	0	0	26568				
				Degree 2			
Degree 4				0	0	2	492075
0	0	4	-21870	0	1	1	25650
0	1	3	43740	0	2	0	-3233925
0	2	2	172260	1	0	1	255150
0	3	1	-508680	1	1	0	- 2612250
0	4	0	592920	2	0	0	346275
1	0	3	38880				
1	1	2	503010	Degree 1			
1	2	1	376650	0	0	1	-182250
1	3	0	- 1163160	0	1	0	-4556250
2	0	2	114372	1	0	0	- 1437750
2	1	1	28674				
2	2	0	508302	Degree 0			
3	0	1	135972	0	0	0	-2008 125
3	1	0	145800				
4	0	0	6912				

Appendix B. The double line (L_{2})

In section 3, we have noted the existence of a special line $\left(L_{2}\right)$ on the surface $\left(\Sigma_{2}\right)$, defined by the pair of equations:

$$
\begin{equation*}
D_{2}\left(X_{0}, Y_{0}, S\right)=R_{3}\left(X_{0}, Y_{0}, S\right)=0 \tag{B.1}
\end{equation*}
$$

It is the intersection of a quartic surface $\left(D_{2}=0\right)$ with one of the seventh degree ($R_{3}=$ 0), and is a double line of the surface. Through the introduction of a new coordinate t :

$$
\begin{equation*}
t=Y_{0}+\sqrt{Y_{0}^{2}-3 X_{0}} \tag{B.2}
\end{equation*}
$$

it is representable by an equation of degree 14 in $\left(X_{0}, t\right)$:

$$
\begin{equation*}
R_{13}\left(X_{0}, t\right) \equiv c_{13} t^{13}+\cdots+c_{0}=0 \tag{B.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{13} \equiv 3\left(2 X_{0}+7\right) \\
& c_{12} \equiv 4\left(X_{0}^{2}-15\right)
\end{aligned}
$$

$c_{11} \equiv-3\left(35 X_{0}^{2}+187 X_{0}+320\right)$
$c_{10} \equiv-18\left(8 X_{0}^{3}+28 X_{0}^{2}+6 X_{0}-135\right)$
$c_{9} \equiv-3\left(16 X_{0}^{4}-233 X_{0}^{3}-1854 X_{0}^{2}-4080 X_{0}-2000\right)$
$c_{8} \equiv 18\left(108 X_{0}^{4}+496 X_{0}^{3}+91 X_{0}^{2}-2700 X_{0}-5400\right)$
$c_{7} \equiv 54 X_{0}\left(24 X_{0}^{4}+X_{0}^{3}-567 X_{0}^{2}-1740 X_{0}-3400\right)$
$c_{6} \equiv 12\left(16 X_{0}^{6}-972 X_{0}^{5}-3780 X_{0}^{4}+3420 X_{0}^{3}+25515 X_{0}^{2}+48600 X_{0}+81000\right)$
$c_{5} \equiv-27 X_{0}^{2}\left(432 X_{0}^{4}+652 X_{0}^{3}-5427 X_{0}^{2}-20520 X_{0}+7200\right)$
$c_{4} \equiv-108 X_{0}^{2}\left(32 X_{0}^{5}-243 X_{0}^{4}-1080 X_{0}^{3}-2790 X_{0}^{2}+7290 X_{0}+24300\right)$
$c_{3} \equiv 243 X_{0}^{3}\left(144 X_{0}^{4}+17 X_{0}^{3}-1863 X_{0}^{2}-1080 X_{0}-7200\right)$
$c_{2} \equiv 486 X_{0}^{4}\left(32 X_{0}^{4}-1188 X_{0}^{2}+306 X_{0}+3645\right)$
$c_{1} \equiv-3^{7} X_{0}^{5}\left(103 X_{0}^{2}-1080\right)$
$c_{0} \equiv 3^{10} \times 14 X_{0}^{6}$.
Given a point $\left(X_{0}, t\right)$ on that curve, the coordinates Y_{0} and T are expressed by

$$
\left\{\begin{array}{l}
Y_{0}=\frac{\left(t^{2}+3 X_{0}\right)}{2 t} \tag{B.4}\\
T=\frac{3}{2 t} \frac{\left[t^{4}-2 t^{2}\left(X_{0}+10\right)-8 t X_{0}^{2}+9 X_{0}^{2}\right]}{\left(t^{2}+9 X_{0}\right)}
\end{array}\right.
$$

Appendix C. The family of quintic curves passing through all the double points

In section 4, we have seen that the plane sections $X_{0}=$ constant of the surface $\left(\Sigma_{2}\right)$ admit a parametric representation, which may be found through the consideration of the family of quintic curves that pass through all the 18 double points: 13 on the line $\left(L_{2}\right)$, three on $\left(L_{0}\right)$ and the remaining two at infinity. The form of these quintics is a priori arbitrary, except that the terms of the highest (fifth) degree must contain a factor $Y_{0} S^{2}$.

We give here, as an illustration of the method, the form of the result in the case of the section $X_{0}=3$. The family is generated by linearly combining the equations of any two members, Q_{0} and Q_{1} say; and when $X_{0}=3$ one may choose for Q_{0} and Q_{1} the following:

$$
\begin{aligned}
& Q_{0} \equiv Y_{0} S^{2}\left(Y_{0}^{2}\right.\left.+3 S^{2}\right)+\left(-28 Y_{0}^{4}+60 Y_{0}^{3} S+65 Y_{0}^{2} S^{2}+66 Y_{0} S^{3}+9 S^{4}\right) \\
&+\left(-17 Y_{0}^{3}+56 Y_{0}^{2} S+279 Y_{0} S^{2}+138 S^{3}\right)+\left(219 Y_{0}^{2}+178 Y_{0} S+555 S^{2}\right) \\
&+\left(-586 Y_{0}+702 S\right)-164=0 \\
& Q_{1} \equiv Y_{0} S^{2}\left(3 Y_{0}^{2}+5 Y_{0} S\right)+\left(28 Y_{0}^{4}-24 Y_{0}^{3} S-18 Y_{0}^{2} S^{2}-24 Y_{0} S^{3}-6 S^{4}\right) \\
&+\left(13 Y_{0}^{3}-5 Y_{0}^{2} S-67 Y_{0} S^{2}-69 S^{3}\right)+\left(-446 Y_{0}^{2}-136 Y_{0} S-258 S^{2}\right) \\
&+\left(-405 Y_{0}-467 S\right)-428=0 .
\end{aligned}
$$

Cutting the section $X_{0}=3$ of the surface $\left(\Sigma_{2}\right)$ by a quintic which is an arbitrary linear combination of Q_{0} and Q_{1}, one obtains, after simplification, a second degree equation for the two movable points of intersection.

Appendix D. The parametric representation of the surface

A parametric representation has been obtained, through the method described in section 4 and appendix C, which gives explicit expressions (equation (4.4)) for Y_{0} and S in terms of X_{0} and of another free parameter w.

In the form (4.10), the expression of $S\left(X_{0}, w\right)$ involves six coefficients c_{1}, \ldots, c_{6} which are all sixth degree polynomials in w :

$$
\left\{\begin{array}{l}
c_{1}(w) \equiv 3(w+3)^{4} A_{2}(w) \tag{D.1}\\
c_{2}(w) \equiv-6(w+3)^{2} d_{2}(w) \\
c_{3}(w) \equiv-(w+3)^{3} d_{3}(w) \\
c_{4}(w) \equiv-24(w+3)^{2} d_{4}(w) \\
c_{5}(w) \equiv-24\left(w^{6}-26 w^{5}-357 w^{4}-1308 w^{3}-4185 w^{2}-25578 w+2781\right) \\
c_{6}(w) \equiv 48\left(5 w^{6}+90 w^{5}+315 w^{4}+1260 w^{3}+11691 w^{2}-486 w+113589\right)
\end{array}\right.
$$

where $A_{2}(w), d_{2}(w), d_{4}(w)$ are given by equations (4.6) and (4.9), and

$$
d_{3}(w) \equiv\left(5 w^{3}-3 w^{2}-681 w+423\right) .
$$

The expression (4.4) of $Y_{0}\left(X_{0}, w\right)$ involves two polynomials F_{1} and F_{2}, respectively linear and quadratic in X_{0} :

$$
\begin{equation*}
F_{1}\left(X_{0}, w\right) \equiv X_{0}(w-9) v_{2}(w)+v_{3}(w) \tag{D.2}
\end{equation*}
$$

where $v_{2}(w)$ is given by equation (4.11), and

$$
v_{3}(w) \equiv 7 w^{3}-69 w^{2}+261 w-2439
$$

The expression of F_{2} may be written:

$$
\begin{equation*}
F_{2}\left(X_{0}, w\right) \equiv X_{0}^{2} f_{2}(w)+X_{0} f_{1}(w)+f_{0}(w) \tag{D.3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
f_{2}(w) \equiv\left(11 w^{6}-18 w^{5}+309 w^{4}-1404 w^{3}-10683 w^{2}+141102 w-219429\right) \\
f_{1}(w) \equiv 12\left(11 w^{6}-32 w^{5}-333 w^{4}+2040 w^{3}+22401 w^{2}-38232 w+137025\right) \\
f_{0}(w) \equiv 3\left(125 w^{6}-390 w^{5}-6549 w^{4}+44748 w^{3}+236547 w^{2}+618138 w+1278261\right)
\end{array}\right.
$$

Appendix E. The (non-vanishing) rate of precession

The rate of precession of the angular momentum vector \vec{j} in the moving frame is given by

$$
\begin{equation*}
\frac{\mathrm{d} \vec{j}}{\mathrm{~d} t}=\vec{j} \wedge \vec{\omega} \tag{E.1}
\end{equation*}
$$

(expressing conservation of the cloud's angular momentum), where the angular velocity vector $\vec{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ is related to \vec{j} by

$$
\begin{equation*}
\omega_{i}=\beta_{i} j_{i} \quad(i=1,2,3) \tag{E.2}
\end{equation*}
$$

where

$$
\beta_{1}=\frac{\left(\Delta_{2}+\Delta_{3}\right)}{\left(\Delta_{2}-\Delta_{3}\right)^{2}} \text { (and circular permutation of the indices) }
$$

and

$$
\Delta_{i} \equiv D_{i}^{2} \quad(i=1,2,3)
$$

Thus the rate of precession cannot vanish unless \vec{j} and $\vec{\omega}$ are parallel, which in turn requires that either $\beta_{1}=\beta_{2}=\beta_{3}$, or that the vector \vec{j} has only one non-zero component.

In the first case, the condition $\beta_{2}=\beta_{3}$ sub-divides into two sub-cases: either $\Delta_{2}=\Delta_{3}$, or $\Delta_{1}=\frac{\left(X_{0} Y_{0}+3\right)}{4 Y_{0}}$; thus the constraint $\beta_{1}=\beta_{2}=\beta_{3}$ is clearly too special to be satisfied all over the sub-manifold $\left(\Sigma_{2}\right)$ of phase-space considered here.

The remaining possibility that j is parallel to a principal axis and the matrix v blockdiagonal entails that \vec{j} and $\overrightarrow{\tilde{j}}$ are parallel, and hence: $(\vec{j} \cdot \overrightarrow{\tilde{j}})^{2}=\left(\vec{j}^{2}\right)(\overrightarrow{\tilde{j}})^{2}$, i.e. (see section 3.1):

$$
\begin{equation*}
A_{12}^{2}=\alpha^{2} A_{22} \tag{E.3}
\end{equation*}
$$

Substituting the expressions (3.1) of A_{12}, A_{22}, the condition becomes:

$$
\begin{equation*}
3\left(X_{0}+S\right)^{2}+2\left(X_{0}^{2}-6 Y_{0}-9\right)=0 \tag{E.4}
\end{equation*}
$$

and is indeed valid on the singular solution $\left(L_{0}\right)$. However, it is clearly not valid at arbitrary points on $\left(\Sigma_{2}\right)$, where the only applicable constraint on the three coordinates is (appendix A):

$$
F\left(X_{0}, Y_{0}, S\right)=0
$$

References

Dyson F J 1968 J. Math. Mech. 1891
Gaffet B 1996 J. Fluid Mech. 325113
Gaffet B 2001a J. Phys. A: Math. Gen. 342097 (paper I)
Gaffet B 2001b J. Phys. A: Math. Gen. 349195 (paper II)
Goursat E 1949 Cours d'Analyse Mathématique vol 2 (Paris: Gauthier-Villars)
Ince E L 1956 Ordinary Differential Equations (New York: Dover)
Kowalevski S 1889 Acta Math. 12177
Kowalevski S 1890 Acta Math. 1481
Ovsiannikov L V 1956 Dokl. Akad. Nauk SSSR 11147

