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Abstract
We consider the model of rotating and expanding gas cloud originally proposed
by Ovsiannikov (1956 Dokl. Akad. Nauk SSSR 111 47) and Dyson (1968
J. Math. Mech. 18 91). Under the restricting assumptions of an adiabatic index
γ = 5/3 and of vorticity-free motion, this has been shown (Gaffet 2001 J. Phys.
A: Math. Gen. 34 2097) to be a Liouville integrable Hamiltonian system. In
the present work, we consider the precessing solutions where the cloud does
not retain a fixed rotation axis. Choosing for definiteness a particular set of
constants of motion (which corresponds to a minimum of the energy), we
show that a separation of variables occurs, and that the equations of motion are
reducible to the form of a Riccati equation, whose integration merely involves
an elliptic integral.

PACS numbers: 02.03.Ik, 45.20.Jj, 47.10.+g

1. Introduction

We consider the class of rotating ellipsoidal gas clouds first proposed by Ovsiannikov (1956)
and Dyson (1968). Gaffet (1996, 2001a: hereafter, paper I) has shown that, when the gas is
monatomic (adiabatic index γ = 5/3) and there is no vorticity, the corresponding equations of
gas motion constitute a Liouville integrable Hamiltonian system with five degrees of freedom.
The evolution of the cloud may be described by the motion of a particle in the five-dimensional
space S2 × 0(3), where S2 is the unit sphere and 0(3) is the three-dimensional rotation group.
The motions in S2 and 0(3) describe the evolution of the cloud’s shape and orientation,
respectively (there is an additional 0(3) group associated with the vorticity, but it need not be
considered in the present case, where the vorticity is taken to be zero).

There are five commuting integrals of motion: the energy constant m, the total angular
momentum �J 2, two additional integrals denoted I6 and L6 and one component (Jz) of angular
momentum; which makes this Hamiltonian system a Liouville integrable one.

0305-4470/03/195211+18$30.00 © 2003 IOP Publishing Ltd Printed in the UK 5211
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Detailed results concerning the form of the solutions are available under the simplifying
assumption of rotation around a fixed principal axis (Gaffet 2001b: paper II).

We present here the first detailed solution of the system in cases of rotation with precession.
For simplicity, we will restrict our consideration to the minimal energy cases (where m takes
its lowest possible value, the other integrals of motion being kept fixed); and, for definiteness,
we choose the following set of constants:

�J 2 = 12 −I6/108 = ε = 4 L6 = 0.

As mentioned in paper II the corresponding minimum value of the energy is m0 = 5.
The value L6 = 0 is compatible with a particular solution without precession, which has

already been studied in earlier works; but besides it, there exists a whole one-parameter family
of solutions with precession, whose study is the subject of the present paper.

The system is reducible to one of second order, for two unknown functions λ(u) and w(u)
say. We show that, under the above restricting assumptions, the system is separable, in the
sense that the evolution of the variable w is governed by an equation involving w only

w′(u) =
√

P(w)

where P is a polynomial of the fourth degree, i.e. w is an elliptic function of the independent
variable u. To complete the solution, the variable λ is shown to satisfy the Riccati equation

dλ/dw = a(w)λ2 + b(w)λ + c(w).

The special solution (which is precession-free in cases where L6 = 0) turns out to provide
two particular solutions of the Riccati equation, whose integration is thereby reduced to one
quadrature; that quadrature is an elliptic integral, which is calculable by sigma functions.

2. The equations of motion

Let us briefly recall the form of the equations of motion for a vorticity-free monatomic
ellipsoidal gas cloud without preferred axis of rotation. Denoting D1, D2, D3 the principal
axes of the cloud, normalized so that the product D1D2D3 = 1, we introduced in paper I a pair
of variables (X0, Y0):{

X0 = Tr(D2)

Y0 = Tr(D−2)
(2.1)

where D is the diagonal matrix diag (D1, D2, D3): (X0, Y0) may be viewed as a coordinate system
on the unit sphere (S2). The independent variable u that will be used here throughout (and
with respect to which the Painlevé property has been shown to hold, at least in precessionless
cases) is related to the Hamiltonian time t by

du = X0 dt . (2.2)

The derivative of D defines the diagonal part of a 3×3 symmetric matrix v:

vii = d

du
ln Di (i = 1, 2, 3) (2.3)

whose off-diagonal part is related to the components of the angular momentum �j in the rotating
frame:

vij = jk

/(
D2

i − D2
j

)
(2.4)

(where (i, j, k) is a circular permutation of (1, 2, 3)).
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We then reformulated the system in terms of eight physical variables: (a) (X0,1,2; Y0,1,2),
is defined by {

Xn = Tr(DvnD)

Yn = Tr(D−1vnD−1)
(n = 0, 1, 2) (2.5)

and (b) (T, P), the characteristic coefficients of the matrix v:

v3 + T v − P = 0. (2.6)

The resulting equations of motion are the following:

(a)

(b)

{
T ′(u) = 3P − Y1

P ′(u) = − 2
3T 2 +

(
2
3T Y0 + Y2

) (2.7)

(a)

(b)

(c)




X′
0(u) = 2X1

X′
1(u) = (

X2 − 2
3T X0

)
+

(
3 − X0Y0

3

)
X′

2(u) = − 4
3T X1 − 2

3Y0X1

(2.8)

(a)

(b)

(c)




Y ′
0(u) = −2Y1

Y ′
1(u) = −(

3Y2 + 2
3T Y0

)
+ 2

(Y 2
0
3 − X0

)
Y ′

2(u) = 4
(

2
3T Y1 − PY0

)
+ 2

(
2
3Y0Y1 + X1

)
.

(2.9)

They admit the integrals of energy (m) and of total angular momentum ( �j2) (also
denoted α2):

9m = (
X0X2 − X2

1

)
+ 3X0 (2.10)

�j 2 ≡ α2 = (
X0X2 − X2

1

)
+ 3Y2 + 4T Y0. (2.11)

We introduced the symmetry (T̃ ) which consists of the inversion of the principal axes of
the cloud

D̃i = 1/Di (i = 1, 2, 3) (2.12)

without affecting the matrix v. While that is only a partial symmetry, not fully respected by
all the equations of motion, we have noted that it is still useful to consider. It turns the angular
momentum vector �j into a new vector j̃

j̃ i = −D2
i ji (i = 1, 2, 3). (2.13)

In addition to the (conserved) angular momentum �j 2, the quantities A12 = − �j · j̃ and

A22 = �̃j 2, although not conserved, turn out to play an essential role as well, as will be seen
below; they are given by expressions analogous to equation (2.11). (Note in particular the
exact symmetry of the expression (2.11) of angular momentum and of A22, under the exchange
of X and Y; and the auto-symmetry exhibited by A12.):{

A12 = (X0Y0 + 3)T + (X0Y2 + Y0X2) + X1Y1

A22 = (
Y0Y2 − Y 2

1

)
+ (3X2 + 4T X0).

(2.14)

The integral I6 admits a relatively simple expression involving A22

I6 ≡ −108ε = 27(P + Y1)
2 + 4T [(T + 3Y0)

2 + 9(Y2 − 3X0)] + 36A22. (2.15)
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(When the expression (2.14) of A22 is substituted in the above equation, the general
expression of I6 given in paper I (p 2104) is recovered.) Although the expression of L6 given
in paper I is complicated, it can also be written down compactly as a triple product:

L6 = ( �̃j, v �̃j , v2 �̃j − 3 �j) (2.16)

involving the vectors �j, �̃j and the matrix v.
Finally, the eight variables are subject to an algebraic constraint

K6 = 0 (2.17)

whose detailed expression may be found in paper I (see equation (5.11) therein). K6 has the
property of being exactly invariant under the inversion of the principal axes; in addition, it is
a homogeneous function of the sixth degree of the components of v.

3. The two-dimensional surface (Σ2)

For the Liouville integrable Hamiltonian motion in five-dimensional space (S2 × 0(3)) with
five commuting integrals of motion (m, α2, I6, L6, Jz), the Liouville tori are five dimensional.
However, the location in the space 0(3) being irrelevant as a consequence of 0(3) invariance,
the corresponding sub-manifold (�3) in the space (Xn, Yn, T, P) has lower dimensionality. In
the case of a fixed rotation axis, (�3) may be simply identified with the sphere S2, and is two
dimensional. In general, however, when there is no fixed axis, the component jz of angular
momentum in the moving frame is no longer determined by the integral of motion JZ, and
(�3) is three dimensional.

In the special case where the energy constant m takes its minimum value m0 (the other
constants α2, I6, L6 being kept fixed), (�3) may still be three dimensional as a complex
manifold, but its restriction to real space becomes two dimensional, and is spanned by a one-
parameter family of real trajectories, whose determination is the subject of the present work.

We will for simplicity restrict our consideration to a minimal energy case with a vanishing
value of L6. In such cases there exists one real trajectory which is precessionless, but all
the others are precessing. This suggests that the cases where L6 is non-zero might not be
essentially different.

3.1. Characterization of the real surface (�2)

When a three-dimensional algebraic hypersurface (�3) has a real part reduced to two
dimensions, that real surface (�2) is algebraic as well. Thus in the minimal energy case
there exists an algebraic combination of (Xn, Yn, T, P) to be found, distinct from the constants
of motion, and whose vanishing characterizes the set of real trajectories. It may be found in
the following way.

We start with the observation that, in minimal energy cases where L6 = 0, there exists on
the Liouville torus a real solution without precession, which has been characterized in earlier
works. For definiteness, we consider in what follows the particular set of constants:

α2 = 12 ε = 4 L6 = 0

for which, as mentioned in paper II, the minimum value of the energy is

m0 = 5.

The real solution without precession is found to satisfy the simple relations:{
Z12 ≡ A12 + 6(T − Y0 + X0) = 0
Z22 ≡ A22 + 2

(
X2

0 − 6Y0 − 9
) = 0

(3.1)
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which completely determine the trajectory, under the assumption of a fixed rotation axis.
We considered the possibility that these equations might still be applicable to the precessing
solutions as well, and might in fact constitute the equation of the surface (�2) that we are
looking for.

Assuming then that Z12 and Z22 vanish all over (�2), their derivatives Z′
12(u), Z′

22(u) must
of course also vanish; making use of the equations of motion, we obtain:


−d

du
( �j · �̃j) = P(9 − X0Y0) − (X1Y2 + X2Y1)

d

du
( �̃j 2

) = 4P
(
3X0 − Y 2

0

)
+ 4X1T + 4Y1(Y2 + T Y0)

(3.2)

and hence the derivatives of Z12, Z22:


−dZ12/du = P(X0Y0 − 27) + X1(Y2 − 12) + Y1(X2 − 6)

1

4

dZ22

du
= P

(
3X0 − Y 2

0

)
+ X1(T + 2X0) + Y1(Y0T + Y2 + 6).

(3.3)

Considering now the system:{
Z12 = Z22 = 0
Z′

12 = Z′
22 = 0

(3.4)

it turns out that these four equations are not independent (when m and α2 are given); an
independent sub-set consists, e.g., of{

Z12 = Z22 = 0
Z′

22 = 0.
(3.5)

Taking account of the m and α2 integrals, the variables X2 and Y2 may be easily eliminated,
and the system (3.5) may serve to determine (X1, Y1, P) as functions of (X0, Y0, T ). The
solution assumes the form of a bi-quadratic equation for X1 (i.e. a second-degree one for X2

1).
Substituting it into the expressions of the integrals of motion, one finds that the following
relations:

(a) K6 = −L6

(b) ε − 4 = L6/108
(3.6)

identically hold for arbitrary values of all three independent variables (X0, Y0, T ).
This remarkable result shows that if we complete the system (3.5) by the equation

ε = 4 (3.7)

we obtain a two-dimensional surface in (X0, Y0, T ) space on which, in addition to m and α2,
the integrals ε, L6 and K6 all have their prescribed values; that is to say, the surface obtained
is a real two-dimensional sub-manifold of (�3), which may be identified with (�2).

3.2. The tenth-degree surface (�2) in coordinates (X0, Y0, T)

The equation of the surface in coordinates (X0, Y0, T ) is found through the elimination of the
remaining variables (X1, Y1, P), which can be done in the following way.

The system reads, in compact form


(
3X2

1 − X0Y
2
1

) = A1(
3X1Y1 + Y0Y

2
1

) = −B1(
Y 2

0 − 3X0
)
(P + Y1) = X1(T + 2X0) − Y1C1

(3.8)
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where A1, B1, C1 are polynomials in (X0, Y0, T ):


A1 ≡ 4
3T X0

(
Y 2

0 − 3X0
) − X0Y0(X0 − 23) − (

2X3
0 − 27X0 + 135

)
B1 ≡ T

(
4
3Y 3

0 − 5X0Y0 + 27
) − Y 2

0 (X0 − 23) − 2Y0X
2
0 + 3X0(X0 − 5).

C1 ≡ 1
3Y0T − Y 2

0 + 2X0 + 5

(3.9)

The system must be completed by the condition ε = 4, which is:

(P + Y1)
2 = −S3/3 (3.10)

where

S3 ≡ 4
9T 3 − 8

3T 2Y0 + 4T
(
Y 2

0 − 2X0 − 11
)

+ 8
(
6Y0 − X2

0 + 15
)
. (3.11)

Then, introducing

(a) D2 ≡ X0(T + 2X0)
2 + 2Y0C1(T + 2X0) + 3C2

1

(b) E2 ≡ (T + 2X0)A1 + 2B1C1

(c) R3 ≡ (
Y 2

0 − 3X0
)2

S3 + (T + 2X0)E2

(3.12)

one obtains

Y 2
1 = −R3/D2 (3.13)

and, in addition

X2
1 = P3

3D2
(3.14)

X1Y1 = Q3

3D2
(3.15)

where {
P3 ≡ (A1D2 − X0R3)

Q3 ≡ (Y0R3 − B1D2).
(3.16)

Owing to a cancellation of the highest degree terms between A1D2 and X0R3, P3 is of
degree 7 only in (X0, Y0, T), as is R3; and similarly Q3 is of degree 7 only; the equation of the
surface (

Q2
3 + 3P3R3

) = 0 (3.17)

is accordingly of degree 14. There is, however, a simplification by a factor
(
Y 2

0 − 3X0
)2

, so
that the final result

F(X0, Y0, T ) ≡
(
Q2

3 + 3P3R3
)

(
Y 2

0 − 3X0
)2 = 0 (3.18)

is of the tenth degree. The coefficients of F are listed in appendix A, using for convenience a
slightly modified coordinate system (X0, Y0, S), where

S ≡ T − Y0. (3.19)

3.3. Asymptotic behaviour and conic point singularity

Introducing for conciseness the new variable S in place of T, the homogeneous terms of degree
10 in F amount to

F10 = X2
0Y

2
0 S4(2X0 + 3S)2. (3.20)

Both factors X0 and (2X0 + 3S) in F10 are associated with a double line at infinity.
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There is also a conic point, denoted (K4), of order 4, located at

X0 = −3 Y0 = 1 S = 5.

It is a degenerate one, locally decomposable into four intersecting complex conjugate planes.
There is in addition a number of conic points of the second order.

3.4. Other double lines

There are two double lines in addition to the two at infinity: the first one is just the trajectory
(L0), the particular solution without precession.

There is another special line on the surface (although not a trajectory), whose existence is
manifest from the form of equation (3.13): it is the line, denoted (L2), defined by the equations:

D2 = R3 = 0 (3.21)

and it is a double line too.
Both (L0) and (L2) pass through the conic point (K4), which is why it is a degenerate conic

point of the fourth order.
The singular solution (L0) is a unicursal curve, and the slope (S − 5)/(X0 + 3) of a straight

line through the point (K4) may serve as the parameter. It admits the following representation,
in terms of an homographically related parameter r:


X0 = 3(3r3 + 3r + 2)

P2(r)

S = −(
X0 + 4

P2

)
Y0 = (X2

0
6 − 3

2 + 4
P 2

2

) (3.22)

where

P2(r) ≡ (3r2 + 1). (3.23)

The line (L2) on the other hand is less easy to study. Its intersection with planes X0 =
constant gives rise to a 13th degree equation, given in appendix B. We note that the section by
the plane X0 = 6 decomposes into a set of four points plus another of nine points.

3.5. Straight lines

We have seen that the section of the surface by the plane at infinity fully decomposes into
straight lines, of which two are double lines. Curiously, there exists yet another straight line
on the surface, defined by the equations{

X0 = 7
T = −2/3.

(3.24)

There are six double points aligned on it: two from the singular solution (L0), and four from
(L2).

Taking Y0 as a free parameter, the remaining variables X1, Y1, P take the following values:


X1 = ±2
√

2/3
Y1 = X1(Y0 − 9)

P = 2X1/9.
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4. A parametric representation of the surface

A natural way of finding a parametric representation of a surface is to look for plane (or straight
line) sections of a type sufficiently simple that they can be parametrized.

Let us first consider the linear sections through the point (K4): there are in general
six points of intersection with the surface, which is intractable. If the line considered also
intersects the second double line at infinity, i.e. if it lies in the plane:

(S + 2X0/3) = 3 (4.1)

there are only four other intersections; moreover, the corresponding quartic equation
decomposes into a pair of trinomials, so that particular plane section does admit a simple
parametrization.

In view of the existence of the first double line at infinity (in the direction of fixed X0)
and of the special physical meaning of X0 as one of the coordinates on the sphere S2, it seems
natural to try next the plane sections X0 = constant, which are curves of degree 8. In the
particular case, where X0 = 6, the section turns out to have the form

F ≡ A2
4 − (2Y0 + 1)A2

3 = 0 (4.2)

where A3 and A4 are, respectively, cubic and quartic polynomials in Y0 and S; it is thus
decomposable, through the transformation:

Y0 = (y2 − 1/2) (4.3)

into a pair of curves of the sixth degree.
Only four of the 13 points of (L2) remain double points under that transformation, which

explains the decomposability of the equation of (L2) when X0 = 6, mentioned earlier.
In the same way, only one point of (L0) remains double, so there are five double points in

all; and there is also a triple point at infinity. If we then cut by a family of unicursal cubics1

having their double point coinciding with the triple point and passing through the five double
points, there only remain two movable intersections, and a parametrization is found which
merely involves a square root.

A similar result may be obtained for arbitrary sections X0 = constant, in spite of the lack of
decomposability into lower degree curves when X0 �= 6. In general, there are 18 double points
in all: 13 on (L2), three on (L0) plus two double points at infinity: the double point (M1) in
direction Y0 is fixed, and another double point (M2) in direction S is fixed; and in the latter case,
the two branches have a common tangent, which is the line at infinity. Cutting by a family of
quintic (fifth degree) curves passing through all the double points, and admitting the common
tangent at (M2), there are only two movable points of intersection2, and a parametrization of
the section, involving a square root, is obtained. It has the following form:{

S = [G1 + 4(w − 3)δ2δ4]
(w + 3)2A2

Y0 = [F2 + 12F1δ2δ4]
6(w + 3)2A2

2

(4.4)

where {
δ2 ≡ √−2�2

δ4 ≡ √−�4/3
(4.5)

1 A unicursal curve admits a rational parametrization. A unicursal cubic must have one double point.
2 The sections of the surface by planes X0 = constant are of degree 8, since these planes pass through a double
straight-line at infinity; thus there are 8 × 5 = 40 intersections with a quintic. These quintics are non-decomposable in
general (the 13 points on (L2) are not aligned), and they present 38 fixed intersections (among which four intersections
at M2), whence the remaining two movable intersections. An account of this method may be found in Goursat (1949,
vol 2, ch 15).
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and �2, G1, F1, F2 are polynomials in X0 and w, while �4 and A2 are functions of w only:

A2(w) ≡ w2 − 42w + 201 (4.6)

�4(w) ≡ w4 + 6w3 + 18w2 + 54w − 207 (4.7)

�2(X0, w) ≡ X2
0u2(w) + 12X0(w − 1)(w + 3) + 30(w + 3)2 (4.8)

with

u2(w) ≡ w2 + 6w − 39

G1(X0, w) ≡ X0d2(w) + 4d4(w)
(4.9)

with {
d2(w) ≡ 3w4 + 20w3 − 78w2 − 1068w + 99
d4(w) ≡ 5w4 − 246w2 + 504w − 4743.

The expressions of F1 and F2, which are, respectively, linear and quadratic in X0, are given
in appendix D.

The sections w = constant of the surface are thus conic sections in projection on the plane
(X0, S):

�(S,X0, w) ≡ (
c1S

2 + c2X0S + c3X
2
0

)
+ (c4S + c5X0) + c6 = 0 (4.10)

where the cn (see appendix D) are functions of w only.
Using the above results, the variables X1, Y1 and P may also be determined in terms of

X0 and w; we give below the expression obtained for X1:

−6(w + 3)A2X1/
√

3 = 4δ4X0[(w − 9)X0 + 6(w − 11)] − δ2(X0v2 + 3A2) (4.11)

where

v2(w) ≡ w2 + 10w − 27.

The parameter w is only determined by the present method up to an arbitrary homographic
(Möbius) transformation, which can be chosen independently for each value of X0. However,
it turned out to be possible to choose it in such a way that the discriminant �4 did not
depend on X0. Moreover, the product (w – 3)2�4(w) precisely coincides with the sixth degree
polynomial A6(w) introduced in paper II (see equation (2.35) therein) when the present values
of the integrals of motion are substituted. This is a remarkable result, in view of the fact that
the analysis of paper II merely concerned solutions in rotation around a fixed axis, whereas
the parametric representation given here concerns solutions which are all precessing, with the
only exception of the singular solution (L0).

5. Separation of variables and linearization

5.1. Separability of the variable w

The parametric representation enables us to calculate the derivatives of X0, Y0 and S as
functions of (X0, w) using the general formulae:


X′

0(u) = 2X1

Y ′
0(u) = −2Y1

S′(u) = 3P + Y1.

(5.1)

The derivative of w may then be obtained through differentiation of equation (4.10):

�xX
′
0(u) + �sS

′(u) + �ww′(u) = 0 (5.2)



5220 B Gaffet

and, as it turns out, it is given by the very simple formula:

w′(u) = δ4/
√

3 (5.3)

which shows that the evolution of w can be determined independently of that of the remaining
variables; moreover, the function w(u) is elliptic.

The problem is now reduced to that of solving a first-order ordinary differential equation
(o.d.e.) for the function X0(w); using: dX0

dw
= 2X1

w′(u)
, where X1 is given by equation (4.11), the

equation is the following:

(w + 3)A2
dX0

dw
+ 4X0[(w − 9)X0 + 6(w − 11)] = δ2

δ4
(v2X0 + 3A2). (5.4)

5.2. Reduction to the Riccati form

Assuming that the Painlevé property still holds in the presence of precession, we expect that
X0(u) has only pole singularities and hence that X0(w) has no movable singularities other than
poles. If the o.d.e. for X0(w) did not include an irrational dependence on X0 (through the
factor δ2), it would have to be of Riccati type (Ince 1956); this suggests that a rationalizing
transformation eliminating the square root δ2 would give rise to an equation of Riccati form
for the new unknown function.

Introducing the rescaling

X0

(w + 3)
≡ β (5.5)

the expression of �2 simplifies to

�2

(w + 3)2
≡ β2u2(w) + 12β(w − 1) + 30

≡ u2(β − β0)(β − β1) (5.6)

where β0, β1 are the roots of the trinomial, and are expressed by

β0 =
[
6(1 − w) +

√
6A2

]
u2

(5.7)

(together with a similar expression for β1). A rationalizing transformation is obtained through
the introduction of the variable λ:

λ = δ2

(w + 3)(β − β0)
. (5.8)

Both δ2 and X0 then have rational expressions in terms of λ:{
X0 = (w + 3)β with

β − β0(w) = −4
√

6A2/(λ
2 + 2u2)

for any given value of the independent variable w.
The resulting o.d.e. for λ(w) has the Riccati form, as expected, and reads

2u2A2
dλ

dw
=

[
2λA2(w + 3) +

3v4(λ
2 + 2u2)

(w + 3)δ4

]
+

√
6A2

[
8λ(w − 9) − v2(λ

2 − 2u2)

δ4

]
(5.10)

where

v4(w) ≡ 2v2(w − 1)(w + 3) − A2u2

≡ w4 + 60w3 + 70w2 − 3012w + 8001.
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5.3. Linearization

The Riccati equation can be linearized, since one particular solution is known: the singular
solution (L0). The parameter r which occurs in equation (3.22) describing the solution (L0) is
an elliptic function of u, defined by{

r ′2(u) ≡ − 2
9P4(r)

P4(r) ≡ 9r4 − 18r3 + 9r2 − 12r − 2.
(5.11)

As the roots of P4(r) are homographically related to those of �4(w), there must exist an
algebraic relation between r and w, of second degree both in r and in w:

3r2M2(w) + 24r(w − 3) + 4(w2 − 3) = 0 (5.12)

where

M2(w) ≡ w2 + 6w + 33.

Solving for r or for w, one finds:

r = −2[2(w − 3) + δ4]/M2(w) (5.13)

w = −[
3r(3r + 4) + 2

√−6P4(r)
]

(3r2 + 4)
. (5.14)

Equations (5.12), (5.13) and (5.14) may be viewed as the Miura transformation, applied
to elliptic functions.

Substituting the expression (5.13) of r(w), the corresponding expressions of X0, of δ2, δ4

and of λ in terms of w may be obtained; λ is found to satisfy the second degree equation:

λ2[3H5 − 2(w + 3)H3

√
6A2

] − 36λδ4u2H2 − 2u2
[
3H5 + 2(w + 3)H3

√
6A2

] = 0 (5.15)

where {
H2 ≡ (w2 − 10w + 73)

H3 ≡ (w3 − 3w − 126)

and H5 is a fifth degree polynomial in w.
Let us note that the coefficient of λ2 in equation (5.15) admits the irrational decomposition:

10
[
3H5 − 2(w + 3)H3

√
6A2

] ≡ [
6(w − 1) −

√
6A2

][
2K4 − K3

√
6A2

]
(5.16)

where {
K3(w) ≡ w3 + 27w2 − 9w + 429
K4(w) ≡ 7w4 − 48w3 + 78w2 − 2664w − 2493.

Solving for λ, one obtains the two roots λA and λB:


λA = u2[18H2δ4 − (w + 3)3√6A2]
[3H5 − 2(w + 3)H3

√
6A2]

λB = u2[18H2δ4 + (w + 3)3
√

6A2]
[3H5 − 2(w + 3)H3

√
6A2]

.
(5.17)

Both roots λA and λB constitute particular solutions of the Riccati equation (5.10), which
is thus not only linearizable, but also integrable by quadrature; and its general solution must
have the form:

ln

(
λ − λA

λ − λB

)
=

∫
f (w) dw. (5.18)

We obtain the following expression for the integrand f (w):

f (w) ≡ 6(w + 3)2

δ4

[
(w + 3)N5 − N7√

6A2

]/
D8 (5.19)



5222 B Gaffet

where N5, N7 and D8 are polynomials in w of degrees 5, 7 and 8, respectively. D8(w) admits
the irrational decomposition

10D8 ≡ (
2K4 − K3

√
6A2

)(
2K4 + K3

√
6A2

)
and the factor at the numerator may be similarly decomposed as

10
[
N7 − (w + 3)N5

√
6A2

] ≡ (
2K4 + K3

√
6A2

)(
4N3 − A2

√
6A2

)
where

N3(w) ≡ w3 + 97w2 − 357w + 99

so that the expression of the integrand may be simplified to

f (w) ≡ −6(w + 3)2

δ4
√

6A2

(
4N3 − A2

√
6A2

)
(
2K4 − K3

√
6A2

) . (5.20)

This is not an integral of elliptic type, owing to the presence of the radical
√

6A2, in
addition to δ4. However, the extra singularities occurring as A2 vanishes are introduced
by the rationalizing transformation (5.7), (5.8) and (5.9), which explicitly involves

√
6A2;

these singularities can be made to disappear through an appropriate (w dependent) Möbius
transformation on λ. One way to see it is to consider the linearized equations of motion in the
neighbourhood of the solution (L0).

5.4. Reduction to an elliptic integral

The singular solution (L0) may be written in the form:


(X0, w) ≡ H5X0 + 2(w + 3)K4 + 3H2δ2δ4 = 0. (5.21)

The o.d.e. (5.4) for X0(w) gives rise to the following generally valid expression for the
derivative of 
:

−(w + 3)A2
d ln 


dw
= [4X0(w − 9) − b2(w)] − δ2

δ4
v2(w) (5.22)

where

b2(w) ≡ 5w2 − 186w + 741.

Let us now substitute on the right-hand side of equation (5.22) the values that X0 and δ2

take at the singular solution. The expression of X0 may be deduced from (5.21) and reads:

X0 = − 2

M6
[H6 + 3(w + 3)2H2δ4] (5.23)

where

M6(w) ≡ M2M4.

M2(w) is given by equation (5.12),

M4(w) ≡ 3w4 − 12w3 − 14w2 − 204w + 1251 (5.24)

and

H6(w) ≡ 6(w − 3)M4 + H4M2 (5.25)

with

H4(w) ≡ 3w4 + 32w3 − 114w2 + 120w − 2601.
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We note the identity:

3M6 ≡ 8H 2
3 + (w + 3)4u2. (5.26)

The corresponding value of δ2(X0, w) is then:

δ2 = 2

M6
[(w + 3)2H5 + 12H2H3δ4]. (5.27)

Upon substitution of (5.23), (5.27) into equation (5.22), and introducing for convenience
the rescaling:


 ≡ (w + 3)6A2
̂ (5.28)

one obtains the following expression, valid in the neighbourhood of 
̂ = 0:

d ln 
̂

dw
= 1

2

d ln M6

dw
− 2(w + 3)B5

M6δ4
(5.29)

where B5(w) is the fifth degree polynomial defined by:

A2B5 ≡ 4(w − 9)H2�4 − v2H5 (5.30)

i.e.

B5(w) ≡ w5 − 15w4 − 94w3 − 246w2 − 1731w + 5157.

The integration of 
̂ is thus reduced to one of elliptic type; and the term 1
2

d ln M6
dw

on the
right-hand side of equation (5.29) merely serves to cancel out the branch-point singularities
occurring at M6 = 0 in the elliptic integral. The cancellation occurs as a consequence of the
exact divisibility by M6 of the polynomial:

�4M
′2
6 (w) + 48(w + 3)2B2

5 .

6. Conclusion

In the framework of Ovsiannikov and Dyson’s model of rotating and expanding gas clouds,
we have succeeded in obtaining the first complete determination of a family of solutions
with precession (see appendix E). The mathematical expression of the result in its final form
surprisingly resembles that for the precessionless cases; which is itself similar to the form
of Kowalevski’s (1889, 1890) results, as noted in paper II (p 9208 therein). In particular,
the same elliptic function w(u) is found to govern the flows with or without precession, at
least under the restricting conditions imposed here; and in both cases the remaining dependent
variable (X0 say) is obtainable through the solution of the Riccati equation, whose integration
is reducible to one quadrature of elliptic type.

These results suggest that there may exist a deep unity underlying the mathematical
descriptions of the ellipsoidal gas flows with and without precession. Let us also mention the
identification obtained here of the last integral of motion L6, with a triple product of a simple
form (equation (2.16)).

Appendix A. The equation of the surface (Σ2)

Writing the equation of the tenth degree surface (�2) in the form:

F(X0, Y0, S) ≡
∑
ijk

cijkX
i
0Y

j

0 Sk = 0.

We list below (table 1) the non-vanishing coefficients cijk which all are integers.
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Table 1. We list here the coefficients c(i, j, k) of the polynomial function F(X0, Y0, S) as defined
in the text.

i j k c (i, j, k) i j k c (i, j, k)

Degree 10 2 3 2 −8 370
2 2 6 27 2 5 0 −10 008
3 2 5 36 3 0 4 2 754
4 2 4 12 3 1 3 17 010

3 2 2 23 382
Degree 9 3 3 1 −18 738
1 3 5 378 4 0 3 3 996
2 3 4 252 4 1 2 17 496
3 1 5 162 4 2 1 12 852
3 3 3 54 4 3 0 −7 992
4 0 5 72 5 0 2 3 024
4 1 4 324 5 1 1 5 832
4 3 2 324 5 2 0 648
5 0 4 96 6 0 1 −144
5 1 3 216 6 1 0 288
5 3 1 384 7 0 0 −864
6 0 3 32
6 1 2 48 Degree 6
6 3 0 128 0 0 6 243

0 1 5 −1 458
Degree 8 0 2 4 2 187
0 4 4 1 323 0 3 3 37 044
1 1 6 −162 0 4 2 −31 752
1 2 5 486 0 6 0 21 168
1 4 3 −2 808 1 0 5 1 134
2 1 5 −54 1 1 4 12 150
2 2 4 2 592 1 2 3 26 244
2 4 2 −4 950 1 3 2 44 604
3 1 4 1152 1 4 1 21 384
3 2 3 3 780 2 0 4 9 207
3 4 1 −2 592 2 1 3 95 904
4 0 4 243 2 2 2 90 639
4 1 3 528 2 3 1 41 796
4 2 2 1 674 2 4 0 −13 392
4 4 0 −165 3 0 3 29 232
5 1 2 −1 440 3 1 2 118 908
5 2 1 432 3 2 1 61 236
6 0 2 −648 3 3 0 54 828
6 1 1 −1 728 4 0 2 40 500
6 2 0 216 4 1 1 107 352
7 0 1 −576 4 2 0 10 368
7 1 0 −576 5 0 1 25 056
8 0 0 −144 5 1 0 35 856

6 0 0 9 072
Degree 7
0 2 5 −486 Degree 5
0 3 4 1 458 0 1 4 1 620
0 5 2 −17 064 0 2 3 85 050
1 2 4 8 046 0 3 2 −7 290
1 3 3 −3 726 0 4 1 − 231 120
1 5 1 −17 280 0 5 0 181 440
2 0 5 −486 1 0 4 −8 748
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Table 1. (Continued.)

i j k c (i, j, k) i j k c (i, j, k)

2 1 4 4 374 1 1 3 69 606
2 2 3 22 950 1 2 2 223 074
1 3 1 217 728 Degree 3
1 4 0 −276 912 0 0 3 52 650
2 0 3 48 114 0 1 2 643 950
2 1 2 157 698 0 2 1 −72 900
2 2 1 −59 562 0 3 0 −156 600
2 3 0 53 946 1 0 2 484 110
3 0 2 67 554 1 1 1 443 070
3 1 1 129 816 1 2 0 − 2182 140
3 2 0 65 934 2 0 1 318 600
4 0 1 75 816 2 1 0 823 500
4 1 0 −23 976 3 0 0 245 160
5 0 0 26 568

Degree 2
Degree 4 0 0 2 492 075
0 0 4 −21 870 0 1 1 25 650
0 1 3 43 740 0 2 0 − 3233 925
0 2 2 172 260 1 0 1 255 150
0 3 1 −508 680 1 1 0 − 2612 250
0 4 0 592 920 2 0 0 346 275
1 0 3 38 880
1 1 2 503 010 Degree 1
1 2 1 376 650 0 0 1 −182 250
1 3 0 − 1163 160 0 1 0 − 4556 250
2 0 2 114 372 1 0 0 − 1437 750
2 1 1 28 674
2 2 0 508 302 Degree 0
3 0 1 135 972 0 0 0 − 2008 125
3 1 0 145 800
4 0 0 6 912

Appendix B. The double line (L2)

In section 3, we have noted the existence of a special line (L2) on the surface (�2), defined by
the pair of equations:

D2(X0, Y0, S) = R3(X0, Y0, S) = 0. (B.1)

It is the intersection of a quartic surface (D2 = 0) with one of the seventh degree (R3 =
0), and is a double line of the surface. Through the introduction of a new coordinate t:

t = Y0 +
√

Y 2
0 − 3X0 (B.2)

it is representable by an equation of degree 14 in (X0, t):

R13(X0, t) ≡ c13t
13 + · · · + c0 = 0 (B.3)

where

c13 ≡ 3(2X0 + 7)

c12 ≡ 4
(
X2

0 − 15
)
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c11 ≡ −3
(
35X2

0 + 187X0 + 320
)

c10 ≡ −18
(
8X3

0 + 28X2
0 + 6X0 − 135

)
c9 ≡ −3

(
16X4

0 − 233X3
0 − 1854X2

0 − 4080X0 − 2000
)

c8 ≡ 18
(
108X4

0 + 496X3
0 + 91X2

0 − 2700X0 − 5400
)

c7 ≡ 54X0
(
24X4

0 + X3
0 − 567X2

0 − 1740X0 − 3400
)

c6 ≡ 12
(
16X6

0 − 972X5
0 − 3780X4

0 + 3420X3
0 + 25 515X2

0 + 48 600X0 + 81 000
)

c5 ≡ −27X2
0

(
432X4

0 + 652X3
0 − 5427X2

0 − 20 520X0 + 7200
)

c4 ≡ −108X2
0

(
32X5

0 − 243X4
0 − 1080X3

0 − 2790X2
0 + 7290X0 + 24 300

)
c3 ≡ 243X3

0

(
144X4

0 + 17X3
0 − 1863X2

0 − 1080X0 − 7200
)

c2 ≡ 486X4
0

(
32X4

0 − 1188X2
0 + 306X0 + 3645

)
c1 ≡ −37X5

0

(
103X2

0 − 1080
)

c0 ≡ 310 × 14X6
0.

Given a point (X0, t) on that curve, the coordinates Y0 and T are expressed by


Y0 = (t2 + 3X0)

2t

T = 3

2t

[
t4 − 2t2(X0 + 10) − 8tX2

0 + 9X2
0

]
(t2 + 9X0)

.

(B.4)

Appendix C. The family of quintic curves passing through all the double points

In section 4, we have seen that the plane sections X0 = constant of the surface (�2) admit
a parametric representation, which may be found through the consideration of the family of
quintic curves that pass through all the 18 double points: 13 on the line (L2), three on (L0) and
the remaining two at infinity. The form of these quintics is a priori arbitrary, except that the
terms of the highest (fifth) degree must contain a factor Y0S2.

We give here, as an illustration of the method, the form of the result in the case of the
section X0 = 3. The family is generated by linearly combining the equations of any two
members, Q0 and Q1 say; and when X0 = 3 one may choose for Q0 and Q1 the following:

Q0 ≡ Y0S
2(Y 2

0 + 3S2) +
(−28Y 4

0 + 60Y 3
0 S + 65Y 2

0 S2 + 66Y0S
3 + 9S4)

+
(−17Y 3

0 + 56Y 2
0 S + 279Y0S

2 + 138S3) +
(
219Y 2

0 + 178Y0S + 555S2)
+ (−586Y0 + 702S) − 164 = 0

Q1 ≡ Y0S
2(3Y 2

0 + 5Y0S
)

+
(
28Y 4

0 − 24Y 3
0 S − 18Y 2

0 S2 − 24Y0S
3 − 6S4)

+
(
13Y 3

0 − 5Y 2
0 S − 67Y0S

2 − 69S3
)

+
(−446Y 2

0 − 136Y0S − 258S2
)

+ (−405Y0 − 467S) − 428 = 0.

Cutting the section X0 = 3 of the surface (�2) by a quintic which is an arbitrary linear
combination of Q0 and Q1, one obtains, after simplification, a second degree equation for the
two movable points of intersection.
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Appendix D. The parametric representation of the surface

A parametric representation has been obtained, through the method described in section 4 and
appendix C, which gives explicit expressions (equation (4.4)) for Y0 and S in terms of X0 and
of another free parameter w.

In the form (4.10), the expression of S(X0, w) involves six coefficients c1, . . . , c6 which
are all sixth degree polynomials in w:


c1(w) ≡ 3(w + 3)4A2(w)

c2(w) ≡ −6(w + 3)2d2(w)

c3(w) ≡ −(w + 3)3d3(w)

c4(w) ≡ −24(w + 3)2d4(w)

c5(w) ≡ −24(w6 − 26w5 − 357w4 − 1308w3 − 4185w2 − 25 578w + 2781)

c6(w) ≡ 48(5w6 + 90w5 + 315w4 + 1260w3 + 11 691w2 − 486w + 113 589)

(D.1)

where A2(w), d2(w), d4(w) are given by equations (4.6) and (4.9), and

d3(w) ≡ (5w3 − 3w2 − 681w + 423).

The expression (4.4) of Y0 (X0, w) involves two polynomials F1 and F2, respectively
linear and quadratic in X0:

F1(X0, w) ≡ X0(w − 9)v2(w) + v3(w) (D.2)

where v2(w) is given by equation (4.11), and

v3(w) ≡ 7w3 − 69w2 + 261w − 2439.

The expression of F2 may be written:

F2(X0, w) ≡ X2
0f2(w) + X0f1(w) + f0(w) (D.3)

where


f2(w) ≡ (11w6 − 18w5 + 309w4 − 1404w3 − 10 683w2 + 141 102w − 219 429)

f1(w) ≡ 12(11w6 − 32w5 − 333w4 + 2040w3 + 22 401w2 − 38 232w + 137 025)

f0(w) ≡ 3(125w6 − 390w5 − 6549w4 + 44 748w3 + 236 547w2 + 618 138w + 1278 261).

Appendix E. The (non-vanishing) rate of precession

The rate of precession of the angular momentum vector �j in the moving frame is given by

d �j
dt

= �j ∧ ⇀

ω (E.1)

(expressing conservation of the cloud’s angular momentum), where the angular velocity vector
⇀
ω = (ω1, ω2, ω3) is related to �j by

ωi = βiji (i = 1, 2, 3) (E.2)

where

β1 = (�2 + �3)

(�2 − �3)2
(and circular permutation of the indices)

and

�i ≡ D2
i (i = 1, 2, 3).

Thus the rate of precession cannot vanish unless �j and �ω are parallel, which in turn requires
that either β1 = β2 = β3, or that the vector �j has only one non-zero component.
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In the first case, the condition β2 = β3 sub-divides into two sub-cases: either �2 = �3,
or �1 = (X0Y0 + 3)

4Y0
; thus the constraint β1 = β2 = β3 is clearly too special to be satisfied all

over the sub-manifold (�2) of phase-space considered here.
The remaining possibility that j is parallel to a principal axis and the matrix v block-

diagonal entails that �j and �̃j are parallel, and hence: ( �j · �̃j)2 = ( �j 2)( �̃j)2, i.e. (see section 3.1):

A2
12 = α2A22. (E.3)

Substituting the expressions (3.1) of A12, A22, the condition becomes:

3(X0 + S)2 + 2(X2
0 − 6Y0 − 9) = 0 (E.4)

and is indeed valid on the singular solution (L0). However, it is clearly not valid at arbitrary
points on (�2), where the only applicable constraint on the three coordinates is (appendix A):

F(X0, Y0, S) = 0.
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